vMAP:用于神经场 SLAM 的矢量化对象建图

vMAP是一种使用神经场表示的实时对象级SLAM系统,无需3D先验即可高效重建对象。通过矢量化训练,vMAP能在单个GPU上同时优化多个对象,实现50个对象的5Hz地图更新。与其他神经场SLAM系统相比,vMAP在场景级和对象级重建上表现出显著的提升。系统能够即时检测和动态添加对象到地图,即使在部分观察或遮挡的情况下,也能重建无懈可击的形状。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图片

本文作者:3D视觉工坊@幸运的石头|来源:3D视觉工坊

论文题目:vMAP: Vectorised Object Mapping for Neural Field SLAM

作者机构:Dyson Robotics Lab, Imperial College London

在公众号「3D视觉工坊」后台回复「原论文」,可获取对应论文pdf文件。

项目主页:https://kxhit.github.io/vMAP

vMAP 是一种基于神经场的对象级密集 SLAM 系统,可根据 RGB-D 输入流实时自动构建对象级场景模型。每个对象都由一个单独的 MLP 神经场模型表示,无需 3D 先验即可实现高效、无懈可击的对象建模。该系统可以在单个场景中优化多达 50 个单独的对象,与之前的神经场 SLAM 系统相比,可以显着提高场景级和对象级的重建质量。

摘要

我们提出了 vMAP,一种使用神经场表示的对象级密集 SLAM 系统。每个对象都由一个小型 MLP 表示,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值