作者:Jiaxu Wang | 编辑:3DCV
添加微信:dddvision,备注:3D高斯,拉你入群。文末附行业细分群
标题:Reinforcement Learning with Generalizable Gaussian Splatting
作者:Jiaxu Wang等人
论文:https://arxiv.org/pdf/2404.07950.pdf
1、导读
这篇文章介绍了一种基于可推广高斯溅射(3DGS)的新颖环境表示方法,用于强化学习。该方法利用3DGS明确表达环境信息,同时捕捉局部几何细节,并且构建出3D一致性的特征。作者提出了一个通用的3DGS框架,可以直接从多视角图像中预测3D高斯云,无需每场景优化。通过在RoboMimic平台上与不同表示和算法进行比较,实验结果表明该通用3DGS表示方法可以显著提升强化学习的性能。这一工作拓展了3DGS在强化学习中的应用前景,并为未来基于视觉的强化学习提供了新的视角。