港科大&浙大 | 强化学习的新革命:通用高斯表示的突破性应用

该博客介绍了如何使用3D高斯表示(3DGS)来增强强化学习的环境表示能力。3DGS结合了显式和隐式表示的优点,能有效捕捉几何细节并创建3D一致性特征。作者提出的通用3DGS框架直接从多视角图像预测3D高斯云,无需场景特定优化,提高了在RoboMimic平台上的强化学习性能。实验表明,这种方法在多个任务中超越了其他表示方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:Jiaxu Wang | 编辑:3DCV
添加微信:dddvision,备注:3D高斯,拉你入群。文末附行业细分群

图片

标题:Reinforcement Learning with Generalizable Gaussian Splatting
作者:Jiaxu Wang等人
论文:https://arxiv.org/pdf/2404.07950.pdf

1、导读

这篇文章介绍了一种基于可推广高斯溅射(3DGS)的新颖环境表示方法,用于强化学习。该方法利用3DGS明确表达环境信息,同时捕捉局部几何细节,并且构建出3D一致性的特征。作者提出了一个通用的3DGS框架,可以直接从多视角图像中预测3D高斯云,无需每场景优化。通过在RoboMimic平台上与不同表示和算法进行比较,实验结果表明该通用3DGS表示方法可以显著提升强化学习的性能。这一工作拓展了3DGS在强化学习中的应用前景,并为未来基于视觉的强化学习提供了新的视角。

2、创新点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值