第二届单目深度估计挑战赛冠军,零样本单图像度量3D预测!

本文介绍了Yin W, Zhang C, Chen H在ICCV 2023上的获奖工作,他们提出了一种解决单目深度估计中度量模糊问题的方法,尤其是相机变换模块,该模块可以插入现有模型以实现对未知相机设置的零样本泛化。该模型在多个零样本基准上表现出SOTA性能,对于单目SLAM的尺度漂移问题有所缓解。" 50880788,5223453,寻找最大'F'矩形区域:单调栈解法,"['算法', '数据结构', '问题解决', '矩阵操作', '单调栈']
摘要由CSDN通过智能技术生成

Yin W, Zhang C, Chen H最新文章:零样本单图像度量3D预测,已被ICCV 2023接受,计算机视觉工坊有幸邀请到作者与大家一起分享,如果您有相关工作需要分享,文末可以联系我们!

作者:Yin W, Zhang C, Chen H  | 来源:3DCV

在公众号「3DCV」后台,回复「原论文」即可获取pdf和代码。

添加微信:dddvisiona,备注:SLAM,拉你入群。文末附行业细分群。

图片

介绍:

由于单图像重建的不稳定,从图像中重建精确的3D场景大多数都建立在多视图几何的基础上。目前最好的单目度量深度估计方法只能处理单个相机模型,由于度量的模糊性,无法进行混合数据训练,而且在大型混合数据集上训练的单目方法通过学习仿射不变深度来实现零样本泛化,而仿射不变深度不能恢复真实世界的度量。

为此,在这项工作中,作者表明零样本单视图测量深度模型的关键在于大规模数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值