Yin W, Zhang C, Chen H最新文章:零样本单图像度量3D预测,已被ICCV 2023接受,计算机视觉工坊有幸邀请到作者与大家一起分享,如果您有相关工作需要分享,文末可以联系我们!
作者:Yin W, Zhang C, Chen H | 来源:3DCV
在公众号「3DCV」后台,回复「原论文」即可获取pdf和代码。
添加微信:dddvisiona,备注:SLAM,拉你入群。文末附行业细分群。
介绍:
由于单图像重建的不稳定,从图像中重建精确的3D场景大多数都建立在多视图几何的基础上。目前最好的单目度量深度估计方法只能处理单个相机模型,由于度量的模糊性,无法进行混合数据训练,而且在大型混合数据集上训练的单目方法通过学习仿射不变深度来实现零样本泛化,而仿射不变深度不能恢复真实世界的度量。
为此,在这项工作中,作者表明零样本单视图测量深度模型的关键在于大规模数据