国防科大最新 | SceneTracker:在4D时空中追踪万物

SceneTracker是首个公开的在线3D点跟踪系统,适用于长时场景流估计(LSFE),尤其适用于机器人、自动驾驶和元宇宙等领域的高级场景理解。该方法基于学习,能精确捕捉4D时空中的物体3D轨迹,抵抗3D空间遮挡和深度噪声。SceneTracker通过迭代更新模板特征和轨迹,利用Transformer挖掘关联,表现出色。此外,研究者还构建了LSFDriving数据集以验证其泛化能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大家好,3DCV今天给大家分享一篇首个公开的(2024.03)有效解决在线3D点跟踪问题或长时场景流估计问题(LSFE)的工作:SceneTracker。如果您有相关工作需要分享,请联系cv3d008!

读者个人理解

在时间与空间组成的4D时空中,精确、在线地捕捉和分析长时且细粒度的物体运动,对机器人自动驾驶元宇宙具身智能等领域更高水平的场景理解起到至关重要的作用。

本研究提出的SceneTracker,是第一个公开的(2024.03)有效解决在线3D点跟踪问题或长时场景流估计问题(LSFE)的工作。其能够快速且精确地捕捉4D时空(RGB-D视频)中任意目标点的3D轨迹,从而使计算机深入了解物体在特定环境中的移动规律和交互方式。

SceneTracker是一种新颖的基于学习的LSFE网络,它采用迭代方法来逼近最优轨迹。同时其动态索引和构建表观和深度相关性特征,并利用Transformer挖掘和利用轨迹内部和轨迹之间的远程联系。通过详细的实验,SceneTracker在处理3D空间遮挡和深度噪声干扰方面显示出卓越的能力,高度符合LSFE任务的需求。

最后,本研究

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值