控制工程学 en 2

第二章
2.1 介绍
在第一章中,我们谈论了分析和设计序列, 。为了获得图解,控制系统工程师通常做简单的假设为了保持确定模型的管理以及 。
接下来步骤是从物理系统的图解中去发展数学模型。我们将会谈论两种方法:1)频域种的传递函数2)时域种的状态方程。在这一章和第三章中,这些主题将会分别讲解。随着我们的发展,我们注意到在每一个样例中发展数学模型的首步是为了应用科学工程的基础物理定律。例如,当我们模拟电网时,基于电路的基础定律,欧姆定律和基尔霍夫定律将会被应用。我们将在一个环内求电压或者在节点求电流。当我们学习了系统,我们将会吧基础指导原理作为定律。 从这些等式中,我们将会获得系统输入与输出的关系。
在第一章中,我们看到微分方程能描述系统输入与输出的关系。微分方程的形式和系数是系统描述或关系。尽管微分方程系统与输入和输出有关,从系统方面来说,不是一个满意表示。看等式1.2,n阶,线性,时不变微分方程,我们看出系统参数输出和输入皆为等式的系数。
我们更倾向数学表示,以至于如图2.1,这里输入,输出和系统都是不同的并且各自分离。我们也可能去表示多个子系统的内部关系。例如,wo

2.2拉普拉斯转换的预习
通过微分方程表示的系统是不同于方框图的模型。现在我们 之后,他们内部关系将会被简单地代数化,我们定义拉普拉斯转换并且展示如何简单物理系统的表示。拉普拉斯变换如下:
F ( s ) = ∫ 0 − ∞ f ( t ) e − s t d t   ( 2.1 ) F(s)=\int_{0_-}^\infty f(t)e^{-st}dt\ \quad (2.1) F(s)=0f(t)estdt (2.1)
这里s= 是复杂的变量,之后知道f(t)并且在公式(2.1)中积分是存在的。我们寻找F(s),它是f(t)的拉普拉斯变换。

反拉普拉斯变换允许我们从F(s)中找到f(s),是
δ − 1 ∣ F ( s ) ∣ = 1 2 j ∫ − j + j F ( s ) e s t d s = f ( t ) u ( t ) ( 2.2 ) \delta^{-1}|F(s)|=\frac{1}{2j}\int_{-j{}}^{+j} F(s)e^{st}ds=f(t)u(t) \quad (2.2) δ1F(s)=2j1j+jF(s)estds=f(t)u(t)(2.2)
这里 u ( t ) = 1 t > 0 = 0 t < 0 u(t)=1 \quad t>0 =0 \quad t<0 u(t)=1t>0=0t<0
是 通过u(t)乘以f(f)构成时间函数,对于t<0,函数为零。
运用公式(2.1) 如果我们用该表,我们
拉普拉斯变化表

在以下样例中,我们表示等式(2.1)的使用为了寻找时间函数的拉普拉斯变化。
例子2.1
时间函数的拉普拉斯变化
问题:找到 f ( t ) = A e − a t u ( t ) f(t)=Ae^{-at}u(t) f(t)=Aeatu(t)的拉普拉斯变化
方法:时间函数不包含脉冲函数,我们能用零替代等式(2.1)的函数下限。
F ( s ) = ∫ 0 ∞ f ( t ) e − s t d t = ∫ 0 ∞ A e − a t e − s t d t = A ∫ 0 ∞ e − ( s + a ) t d t = − A s + a e − ( s + a ) t = A s + a ( 2.3 ) F(s)=\int_0^\infty f(t)e^{-st}dt=\int_0^\infty Ae^{-at}e^{-st}dt=A\int_0^\infty e^{-(s+a)t}dt=-\frac{A}{s+a}e^{-(s+a)t} =\frac{A}{s+a} \quad (2.3) F(s)=0f(t)estdt=0Aeatestdt=A0e(s+a)tdt=s+aAe(s+a)t=s+aA(2.3)
另外拉普拉斯变化,我们能用拉普拉斯理论列出表2.2.为了帮助转换f(f)与F(s)。在下个样例中,我们在表2.2中表示了拉普拉斯变换理论的应用。

例子2.2
反拉普拉斯变化
问题:找到 F 1 ( s ) = 1 ( s + 3 ) 2 F_1(s)=\frac{1}{(s+3)^2} F1(s)=(s+3)21的反拉普拉斯变化。
方法:对于这个样例,我们

例子2.3
微分方程的拉普拉斯变换
问题:给与微分方程,所有的初始条件都为零,去解决 y ( t ) y(t) y(t) 。用拉普拉斯变换。
d 2 y d t 2 + 12 d y d t + 32 y = 32 u ( t ) ( 2.14 ) \frac{d^2 y}{dt^2}+12\frac{dy}{dt}+32y=32u(t) \quad (2.14) dt2d2y+12dtdy+32y=32u(t)(2.14)
方法:对于公式2.14,替代对应的 F ( s ) F(s) F(s), 。之后,等式2.14的拉普拉斯变换是 s 2 Y ( s ) + 12 s Y ( s ) + 32 Y ( s ) = 32 s ( 2.15 ) s^2Y(s)+12sY(s)+32Y(s)=\frac{32}{s}\quad (2.15) s2Y(s)+12sY(s)+32Y(s)=s32(2.15)
解决该响应, Y ( s ) Y(s) Y(s) Y ( s ) = 32 s ( s 2 + 12 s + 32 ) = 32 s ( s + 4 ) ( s + 8 ) ( 2.16 ) Y(s)=\frac{32}{s(s^2+12s+32)}=\frac{32}{s(s+4)(s+8)} \quad(2.16) Y(s)=s(s2+12s+32)32=s(s+4)(s+8)32(2.16)
为了解决 y ( t ) y(t) y(t),我们注意到等式(2.16)不用匹配表2.1中的任何术语。
2.3传递函数
前一部分,我们定义拉普拉斯变化与其反变换。我们形成右边的部分分数扩展和用 F ( s ) F(s) F(s)去匹配每一个结果。之后, Y ( s ) = 32 s ( s + 4 ) ( s + 8 ) = k 1 s + k 2 s + 4 + k 3 s + 8 ( 2.17 ) Y(s)=\frac{32}{s(s+4)(s+8)}=\frac{k_1}{s}+\frac{k_2}{s+4}+\frac{k_3}{s+8}\quad(2.17) Y(s)=s(s+4)(s+8)32=sk1+s+4k2+s+8k3(2.17)
在等式 ( 2.13 ) (2.13) (2.13), k 1 = 32 ( s + 4 ) ( s + 8 ) x → 0 = 1 ( 2.18 a ) k_1=\frac{32}{(s+4)(s+8)} _{x\to 0} =1\quad(2.18a) k1=(s+4)(s+8)32x0=1(2.18a)
k 2 = 32 ( s + 8 ) x → − 4 = − 2 ( 2.18 b ) k_2=\frac{32}{(s+8)} _{x\to -4} =-2\quad(2.18b) k2=(s+8)32x4=2(2.18b)
k 3 = 32 ( s + 4 ) x → − 8 = 1 ( 2.18 c ) k_3=\frac{32}{(s+4)} _{x\to -8} =1\quad(2.18c) k3=(s+4)32x8=1(2.18c)
之后, Y ( s ) = 1 s − 2 s + 4 + 1 s + 8 ( 2.19 ) Y(s)=\frac{1}{s}-\frac{2}{s+4}+\frac{1}{s+8} \quad(2.19) Y(s)=s1s+42+s+81(2.19)
在表2.1中,等式 2.19 2.19 2.19的三部分分别表示为 F ( s ) F(s) F(s), y ( s ) y(s) y(s)是反拉普拉斯变换的和。
y ( t ) = ( 1 − 2 e − 4 t + e − 8 t ) u ( t ) ( 2.20 ) y(t)=(1-2e^{-4t}+e^{-8t})u(t)\quad (2.20) y(t)=(12e4t+e8t)u(t)(2.20)
等式 2.20 2.20 2.20中的 u ( t ) u(t) u(t)表示,直到 t = 0 t=0 t=0,响应为0。除非其他特殊情况,系统的所有输入都不会开始。之后,直到 t = 0 t=0 t=0,输出响应也是零。更便利地说,我们现在将取出 u ( t ) u(t) u(t)。我们写输出响应 y ( t ) = 1 − 2 e 4 t + e − 8 t ( 2.21 ) y(t)=1-2e^{4t}+e^{-8t}\quad(2.21) y(t)=12e4t+e8t(2.21)
情况2:
情况3:分母中具有复根的F(s)示例是 F ( s ) = 3 s ( s 2 + 2 s + 5 ) ( 2.30 ) F(s)=\frac{3}{s(s^2+2s+5)}\quad(2.30) F(s)=s(s2+2s+5)3(2.30)
如下形式可以被扩展:
3 s ( s 2 + 2 s + 5 ) = k 1 s + k 2 s + k 3 s 2 + 2 s + 5 ( 2.31 ) \frac{3}{s(s^2+2s+5)}=\frac{k_1}{s}+\frac{k_2 s+k_3}{s^2+2s+5}\quad(2.31) s(s2+2s+5)3=sk1+s2+2s+5k2s+k3(2.31)
用一般方法, k 1 k_1 k1 3 5 \frac{3}{5} 53 k 2 和 k 3 k_2和k_3 k2k3首先乘以最小公分母 s ( s 2 + 2 s + 5 ) 并且消除分母,之后,我们得到 s(s^2+2s+5)并且消除分母,之后,我们得到 s(s2+2s+5)并且消除分母,之后,我们得到 3 = k 2 + 3 5 s 2 + k 3 + 6 5 s + 3 ( 2.32 ) 3=k_2+\frac{3}{5}s^2+k_3+\frac{6}{5} s+3\quad(2.32) 3=k2+53s2+k3+56s+3(2.32)
平衡系数, ( k 2 + 3 5 ) 和 ( k 3 + 6 5 ) = 0 (k_2+\frac{3}{5})和(k_3+\frac{6}{5})=0 (k2+53)(k3+56)=0,之后,KaTeX parse error: Undefined control sequence: \k at position 18: …2=-\frac{3}{5}和\̲k̲_3=-\frac{6}{5},之后, F ( s ) = 3 s ( s 2 + 2 s + 5 ) = 3 5 s − 3 5 s + 2 s 2 + 2 s + 5 ( 2.33 ) F(s)=\frac{3}{s(s^2+2s+5)}=\frac{\frac{3}{5}}{s} -\frac{3}{5} \frac{s+2}{s^2+2s+5}\quad(2.33) F(s)=s(s2+2s+5)3=s5353s2+2s+5s+2(2.33)

我们得到 L [ A e − a t c o s w t ] = A ( s + a ) ( s + a ) 2 + w 2 ( 2.34 ) L[Ae^{-at}coswt]=\frac{A(s+a)}{(s+a)^2+w^2}\quad(2.34) L[Aeatcoswt]=(s+a)2+w2A(s+a)(2.34)
类似地
L [ B e − a t s i n w t ] = B w ( s + a ) 2 + w 2 ( 2.35 ) L[Be^{-at}sinwt]=\frac{Bw}{(s+a)^2 + w^2}\quad(2.35) L[Beatsinwt]=(s+a)2+w2Bw(2.35)
添加到 ( 2.34 ) , ( 2.35 ) (2.34),(2.35) (2.34),(2.35),我们得到
L [ A e − a t c o s w t + B e − a t s i n w t ] = A ( s + a ) + B w ( s + a ) 2 + w 2 ( 2.36 ) L[Ae^{-at}coswt+Be^{-at}sinwt]=\frac{A(s+a)+Bw}{(s+a)^2+w^2}\quad(2.36) L[Aeatcoswt+Beatsinwt]=(s+a)2+w2A(s+a)+Bw(2.36)
现在我们可以通过完全平方转换2.33为2.36的形式,因此, F ( s ) = 3 5 s − 3 5 ( s + 1 ) + ( 1 2 ) ( 2 ) ( s + 1 ) 2 + 2 2 ( 2.37 ) F(s)=\frac{\frac{3}{5}}{s}-\frac{3}{5}\frac{(s+1)+(\frac{1}{2})(2)}{(s+1)^2+2^2}\quad (2.37) F(s)=s5353(s+1)2+22(s+1)+(21)(2)(2.37)
将等式(2.37)与表2.1和等式(2.36)相比较,我们可以得到 f ( t ) = 3 5 − 3 5 e − t   c o s 2 t + 1 2 s i n 2 t ( 2.38 ) f(t)=\frac{3}{5}-\frac{3}{5}e^{-t}\,cos2t+\frac{1}{2}sin2t\quad(2.38) f(t)=5353etcos2t+21sin2t(2.38)
为了可视化结果,f(t)的可选形式是更好的。

schematic 图解的
time domain 时域
frequency domain 频域
sum 求和
codeeicient 系数
integral 积分
fraction 分数
denominator 分母
complex roots 复根

链接:123r

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值