亚马逊云科技-跨境电商论坛运营提效数据挖掘GenAI品牌竞争

508003_跨境电商行业论坛_运营提效:数据掘金打造全球化品牌竞争力

关键字: [出海日城市巡展, 数据分析基础设施, 运营提效, 行业分析模板, 数据助力运营, 数字驱动运营]

本文字数: 1800, 阅读完需: 9 分钟

导读

本视频介绍了如何利用数据分析和人工智能技术来提升跨境电商运营效率。主要内容包括:1)数据分析在跨境电商运营中的三个阶段:运营知识支持、数据助力运营、数字驱动运营;2)利用AI技术生成海外模特图像,降低运营成本;3)搜索增强技术,如对话式搜索和知识库应用;4)数据治理和数据目录的重要性;5)不同业务领域采用分布式数据团队协作的架构模式。视频强调了数据分析和人工智能在提升跨境电商运营效率中的关键作用。

演讲精华

以下是小编为您整理的本次演讲的精华,共1500字,阅读时间大约是8分钟。

在当今时代,数据已经成为推动企业运营和发展的关键驱动力。无论是传统的商业智能(BI)还是新兴的人工智能和机器学习技术,数据都扮演着至关重要的角色。本文将从数据的角度出发,探讨如何构建数据基础设施来支持运营提效,并最终实现数字化驱动的运营模式。

一、运营数据分析的三个阶段

在实践中,运营数据分析可以概括为三个阶段,每个阶段都有其独特的特点和挑战。

第一阶段被称为”支持运营知识”阶段。在这个阶段,企业通常会参考行业内已有的固定分析模板,例如独立站点相关的搜索分析、电商网站的用户行为分析(UBA)以及电商漏斗报表等。这些分析需求早在十几年前就已经存在,可见它们的重要性。通过利用这些行业标准的分析模板,企业能够快速获取运营所需的基本知识和见解。

随着业务的发展,企业进入了第二阶段——“数据助力运营”阶段。在这个阶段,单纯依赖行业模板已经无法满足企业的需求,因为每个企业的运营内容都有所不同,包括所售卖的产品品类、目标市场区域以及目标人群等。因此,企业需要根据自身的实际情况,提供相应的数据支持。例如,根据ToC(面向客户)或C端(面向个人消费者)的个人信息,开展精准的搜索推广场景;或者建立起数据沉淀,将来自于自有品牌网站、第三方电商平台等渠道的数据进行整合和分析。在这个阶段,业务部门会频繁要求数据团队提供新的数据指标,以满足不断变化的需求。

最后,企业进入了”数字驱动运营”的第三阶段。在这个阶段,数据分析应用无论是面向外部用户还是内部员工,基本上都需要与企业的业务流程和管理流程相结合。围绕流量运营、用户运营、内容运营等领域,企业开始利用人工智能技术来优化运营效率。例如,通过虚拟模特生成技术,可以根据不同的海外区域和场景,快速生成符合当地审美的模特形象,从而提高营销素材的制作效率和质量。同时,企业还开始采用对话式搜索增强技术,将搜索系统与知识库对接,为用户提供更加精准和个性化的搜索体验。此外,基于用户画像的精准营销也成为了这一阶段的重点。

二、数据基础设施建设的考虑

为了支持上述三个阶段的运营数据分析需求,企业需要构建一个健全的数据基础设施。在建设过程中,需要从指标层面、服务化层面和架构层面进行全面考虑。

在指标层面,企业需要快速验证某个动作或决策对业务的价值。因此,需要采用无服务器(Serverless)架构和能够快速集成的工具或产品,例如亚马逊的Zero ETL(无提取、转换和加载)技术。同时,为了支持后续架构的演进,企业还需要采用湖仓分离架构,将数据湖和数据仓库相分离,以提高系统的灵活性和扩展性。

在服务化层面,不同的数据分析场景需要选用不同的专业化数据引擎,以获得高性价比和良好的用户体验。例如,对于临时的数据查询和分析,可以使用Athena等服务;对于大数据分析,可以采用EMR(Elastic MapReduce)等Hadoop技术栈;而对于传统的数据仓库需求,则可以使用Redshift等MPP(大规模并行处理)数据库。此外,企业还需要数据目录、DataOps(数据运营)等工具和平台,来统一管理数据流程,提高数据治理的效率。

在架构层面,大型企业内的数据分析通常采取多团队分工协作的模式,存在跨领域协同的需求。不同的数据团队可能会针对不同的业务领域进行专门的数据分析和建模,例如推荐系统团队、广告投放团队等。这些团队之间需要进行紧密协作,共享数据和模型,以提高整体的分析效率。同时,数据分析应用也需要与企业的业务流程相结合,考虑数据的生产周期(SOA)等因素,以确保数据的及时性和准确性。

三、亚马逊的现代化数据分析架构

作为云计算领域的领导者,亚马逊为客户提供了一套完整的现代化数据分析架构,包括:

  1. 统一的数据湖存储(S3) 亚马逊S3(简单存储服务)提供了一个统一的数据湖存储,可以存储来自各种来源的结构化和非结构化数据。无论是网站日志、物联网设备数据还是传统的关系数据库数据,都可以存储在S3中,为后续的数据分析奠定基础。
  2. 多种数据分析引擎矩阵 针对不同的数据分析需求,亚马逊提供了多种数据分析引擎,包括Athena用于临时查询、EMR用于大数据分析、Redshift用于数据仓库等。客户可以根据自身的需求和预算,选择最合适的引擎进行部署和使用。
  3. 搜索引擎(OpenSearch)和消息队列(MSK/Kafka)等 除了数据分析引擎,亚马逊还提供了搜索引擎OpenSearch(前身为Elasticsearch)和消息队列服务MSK(基于Apache Kafka),为客户提供全方位的数据处理和分析能力。
  4. 数据可视化(QuickSight)等 最后,亚马逊QuickSight等数据可视化工具,可以帮助客户将分析结果以直观的方式呈现出来,为决策提供有力的数据支持。

通过这套完整的现代化数据分析架构,客户可以快速构建起自己的数据基础设施,满足各种复杂的数据分析需求。

四、典型客户案例

在实践中,已经有许多客户采用了亚马逊的现代化数据分析架构,取得了卓越的成绩。其中一个典型案例是一家知名的咖啡公司。

在项目初期,该公司的数据团队只有两名工程师,人力资源极为有限。为了快速构建数据分析能力,他们采用了亚马逊的无服务器架构,包括Redshift数据仓库、Lambda无服务器计算等服务。凭借这种轻量级的架构,两名工程师就成功支撑了数百个指标的开发和维护,为公司的运营决策提供了有力的数据支持。

该案例充分展示了亚马逊现代化数据分析架构的优势:灵活性高、部署快速、成本可控。通过合理选择和组合不同的云服务,企业可以快速构建起数据分析能力,满足不断变化的业务需求。

总的来说,无论是传统的商业智能,还是新兴的人工智能和机器学习技术,数据都扮演着至关重要的角色。企业需要重视数据采集、处理和服务业务的能力建设,构建一个健全的数据基础设施。只有这样,才能真正实现数字化驱动的运营模式,提高运营效率,增强品牌竞争力。

在这个过程中,云计算无疑提供了强大的技术支持。以亚马逊为代表的云计算厂商,为企业提供了全方位的数据分析工具和服务,帮助企业快速构建数据能力,抓住数字化转型的机遇。相信在不久的将来,更多企业将加入数字化运营的行列,开启数据驱动的新时代。

总结

亚马逊云上数据分析产品部的专家分享了如何构建数据基础设施来支持运营提效。他概括了三个阶段:第一阶段是支持运营知识,利用行业内固定的分析模板;第二阶段是数据助力运营,根据独特的运营内容提供粗粒度画像信息;第三阶段是数据驱动运营,将数据分析应用与企业业务流程相结合。

他强调了在第三阶段中,AI技术在素材生成、对话式搜索等方面的应用,以及数据质量和治理的重要性。他还介绍了湖仓分离架构、数据目录、DataOps等概念,以及跨领域数据团队协作的必要性。最后,他以现代化架构为例,阐述了将电商行为分析视为数据源的重要性。

总的来说,专家呼吁企业构建现代化的数据基础设施,利用新兴技术提高运营效率,并强调数据治理和跨领域协作在数字化转型中的关键作用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值