【随记】终于知道样本方差无偏估计中 n-1 的来源了!

1 篇文章 0 订阅
1 篇文章 0 订阅

创建时间:2024-08-16
首发时间:2024-08-16
最后编辑时间:2024-08-16
作者:Geeker_LStar

顾名思义,【随记】这个专栏没有固定的主题。它可能会包含一些有趣的数学问题(咳咳咳,论我的突发奇想)或一些 “有趣” 的 bug,等等。相当于一种日常记录,有点像大杂烩。
你或许能从其中找到一些有趣的东西…嘿嘿。⭐

今天下午在写《机器学习》专栏中讲主成分分析的文章,讲到样本主成分分析的协方差计算的时候,我发现 “取平均值” 并不是乘 1 n \frac{1}{n} n1,而是乘 1 n − 1 \frac{1}{n-1} n11. 同时,我之前早就发现,在用样本数据而不是总体数据计算方差的时候,也是一样用 1 n − 1 \frac{1}{n-1} n11 而非 1 n \frac{1}{n} n1 做取平均值。
这个问题我好奇了挺久的,看到一些说法是 “这种计算叫做无偏估计,除以 n-1 是为了补偿样本而非总体带来的偏差” 或 “样本数据消耗了一个自由度,所以要 -1”,不过我觉得这些说法在数学上不够严谨,so,这一篇就从数学的角度来解释(证明)一下 1 n − 1 \frac{1}{n-1} n11 的合理性!

okay 先来看一下问题的背景。
我们现在有一堆数据,想要计算这一堆数据的方差。但是很抱歉哦(?),我们不能用所有数据去计算总体方差,而是只能选择其中的一部分数据去计算样本方差 (别问为什么问就是我也不知道) 。我们的目的就是让样本方差 s 2 s^2 s2 的期望尽可能接近总体方差 σ 2 \sigma^2 σ2。(后面我们可以证明,样本方差的期望就等于总体方差,所以被叫做 “无偏估计”。

okay(什么口头禅),我们把【处理前的】(看好这四个字)样本方差记作 s 2 s^2 s2,则有:
s 2 = ∑ i = 1 n ( x i − x ˉ ) 2 s^2 = \sum_{i=1}^{n}(x_i-\bar{x})^2 s2=i=1n(xixˉ)2

其中 x i x_i xi 就是第 i i i 个数据, x ˉ \bar{x} xˉ 就是样本均值。至于为什么是处理前的,因为它没有做【取平均值】的操作(无论是取 1/n 还是 1/n-1)。
嗯…因为最终是要和总体方差建立关联的,所以我们不妨先在 s 2 s^2 s2 中引入总体均值 μ \mu μ
s 2 = ∑ i = 1 n ( ( x i − μ ) − ( x ˉ − μ ) ) 2 s^2= \sum_{i=1}^{n}((x_i-\mu)-(\bar{x}-\mu))^2 s2=i=1n((xiμ)(xˉμ))2

很显然式子本身并没有改变。
好的,接下来我们进行一波简单的变形(其实就是打开完全平方)。
s 2 = ∑ i = 1 n ( ( x i − μ ) 2 + 2 ( x i − μ ) ( x ˉ − μ ) + ( x ˉ − μ ) 2 ) s^2= \sum_{i=1}^{n}((x_i-\mu)^2+2(x_i-\mu)(\bar{x}-\mu)+(\bar{x}-\mu)^2) s2=i=1n((xiμ)2+2(xiμ)(xˉμ)+(xˉμ)2)

then,我们利用 ∑ \sum 的性质,把一个 ∑ \sum 拆成三个。
s 2 = ∑ i = 1 n ( x i − μ ) 2 + ∑ i = 1 n 2 ( x i − μ ) ( x ˉ − μ ) + ∑ i = 1 n ( x ˉ − μ ) 2 s^2= \sum_{i=1}^{n}(x_i-\mu)^2+\sum_{i=1}^{n}2(x_i-\mu)(\bar{x}-\mu)+\sum_{i=1}^{n}(\bar{x}-\mu)^2 s2=i=1n(xiμ)2+i=1n2(xiμ)(xˉμ)+i=1n(xˉμ)2

en…现在我们需要一些《注意力》(《注意到》(((doge)
我们不妨把三项拆开来看。首先第一项 ∑ i = 1 n ( x i − μ ) 2 \sum_{i=1}^{n}(x_i-\mu)^2 i=1n(xiμ)2。哦吼,这玩意不就是每一个样本和总体均值的差的平方的和嘛,这是啥,这不就是方差 * n 嘛((因为正经的方差需要在平方和前面 * 1 / n 1/n 1/n.
所以第一项破案了, ∑ i = 1 n ( x i − μ ) 2 = n σ 2 \sum_{i=1}^{n}(x_i-\mu)^2=n\sigma^2 i=1n(xiμ)2=nσ2,前面说过 σ 2 \sigma^2 σ2 就是总体方差。

第二项, ∑ i = 1 n 2 ( x i − μ ) ( x ˉ − μ ) \sum_{i=1}^{n}2(x_i-\mu)(\bar{x}-\mu) i=1n2(xiμ)(xˉμ)。这个怎么说,首先 2 ( x ˉ − μ ) 2(\bar{x}-\mu) 2(xˉμ) 是一个定值,所以我们可以把它提到 ∑ \sum 外面,即:
∑ i = 1 n 2 ( x i − μ ) ( x ˉ − μ ) = 2 ( x ˉ − μ ) ∑ i = 1 n ( x i − μ ) \sum_{i=1}^{n}2(x_i-\mu)(\bar{x}-\mu)=2(\bar{x}-\mu)\sum_{i=1}^{n}(x_i-\mu) i=1n2(xiμ)(xˉμ)=2(xˉμ)i=1n(xiμ)

我们来看一下 ∑ i = 1 n ( x i − μ ) \sum_{i=1}^{n}(x_i-\mu) i=1n(xiμ) 这一项。
还是,把它用 ∑ \sum 的规则展开:
∑ i = 1 n ( x i − μ ) = ∑ i = 1 n x i − n μ = n x ˉ − n μ = n ( x ˉ − μ ) \sum_{i=1}^{n}(x_i-\mu)=\sum_{i=1}^nx_i-n\mu=n\bar{x}-n\mu=n({\bar{x}-\mu}) i=1n(xiμ)=i=1nxinμ=nxˉnμ=n(xˉμ)

很好,这样第二项也破案了,最终的结果就是:
2 ( x ˉ − μ ) ∑ i = 1 n ( x i − μ ) = 2 ( x ˉ − μ ) n ( x ˉ − μ ) = 2 n ( x ˉ − μ ) 2 2(\bar{x}-\mu)\sum_{i=1}^{n}(x_i-\mu)=2(\bar{x}-\mu)n({\bar{x}-\mu})=2n(\bar{x}-\mu)^2 2(xˉμ)i=1n(xiμ)=2(xˉμ)n(xˉμ)=2n(xˉμ)2

接着来看第三项, ∑ i = 1 n ( x ˉ − μ ) 2 \sum_{i=1}^{n}(\bar{x}-\mu)^2 i=1n(xˉμ)2.
emmm 这个没什么说的吧,直接就等于 n ( x ˉ − μ ) 2 n(\bar{x}-\mu)^2 n(xˉμ)2.

okay 现在三项都破案了,最终我们原始的式子就变成了:
s 2 = σ 2 − 2 n ( x ˉ − μ ) 2 + n ( x ˉ − μ ) 2 = n σ 2 − n ( x ˉ − μ ) 2 s^2=\sigma^2-2n(\bar{x}-\mu)^2+n(\bar{x}-\mu)^2=n\sigma^2-n(\bar{x}-\mu)^2 s2=σ22n(xˉμ)2+n(xˉμ)2=nσ2n(xˉμ)2

好嘞,现在我们可以计算 s 2 s^2 s2 的期望:
E [ s 2 ] = E [ n σ 2 − n ( x ˉ − μ ) 2 ] \mathbb{E}[s^2] = \mathbb{E}[n\sigma^2 - n(\bar{x} - \mu)^2] E[s2]=E[nσ2n(xˉμ)2]

期望具有线性性质(和 ∑ \sum 一样),所以我们可以把两项分开写:
E [ s 2 ] = n σ 2 − n E [ ( x ˉ − μ ) 2 ] \mathbb{E}[s^2] = n\sigma^2 - n \mathbb{E}[(\bar{x} - \mu)^2] E[s2]=nσ2nE[(xˉμ)2]

由于:
E [ ( x ˉ − μ ) 2 ] = σ 2 n \mathbb{E}[(\bar{x} - \mu)^2] = \frac{\sigma^2}{n} E[(xˉμ)2]=nσ2

代入上面展开后的期望得到:
E [ s 2 ] = n σ 2 − n ⋅ σ 2 n = n σ 2 − σ 2 = ( n − 1 ) σ 2 \mathbb{E}[s^2] = n\sigma^2 - n \cdot \frac{\sigma^2}{n} = n\sigma^2 - \sigma^2 = (n-1)\sigma^2 E[s2]=nσ2nnσ2=nσ2σ2=(n1)σ2

okay!!! 非常好!我们已经得到了想要的式子!

E [ s 2 ] \mathbb{E}[s^2] E[s2],也就是处理前的样本方差的期望,等于 ( n − 1 ) (n-1) (n1) 倍的总方差!

所以,为了让处理后的样本方差(也就是取平均值之后的样本方差)的期望等于总方差,即实现无偏估计,我们只需要把处理前的样本方差乘上 1 n − 1 \frac{1}{n-1} n11 就可以了!

也就是说,处理后的样本方差,记作 S 2 S^2 S2,就等于:
1 n − 1 ∑ i = 1 n ( x i − x ˉ ) 2 \frac{1}{n-1}\sum_{i=1}^{n}(x_i-\bar{x})^2 n11i=1n(xixˉ)2

okay,现在我们成功破案!
也就是说,为了保证样本方差的期望等于总体方差,我们需要在取平均值的时候乘以 1 n − 1 \frac{1}{n-1} n11 而不是 1 n \frac{1}{n} n1.
终于从数学上解决了这个困扰我很久的问题(cooooool!!

好了好了,解决了这个,我要继续去写我的主成分分析了…
(是嘟这是随记所以每一篇都不会很长。

这篇文章讲解了在进行无偏估计时,样本方差需要用 1 n − 1 \frac{1}{n-1} n11 而不是 1 n \frac{1}{n} n1 取平均值的数学道理。希望对你有所帮助!
一起加油!❤

  • 6
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值