从定义开始,一文看懂无偏估计的方差为什么是n-1

什么叫无偏估计?为什么方差的定义里写的是 1 n \frac{1}{n} n1,但又说无偏估计是 1 n − 1 \frac{1}{n-1} n11?好像有人说道自由度是 n − 1 n-1 n1?自由度又是什么?

本文本着一切都从定义开始的原则,推导无偏估计的方差

X 1 , X 1 , ⋯   , X n X_1, X_1,\cdots, X_n X1,X1,,Xn是n个采样样本。则这n个样本的无偏估计下的方差为
σ 2 = 1 n − 1 [ ∑ i = 1 n ( X i − X i ˉ ) 2 ] \sigma^2 = \frac{1}{n-1}[\sum^{n}_{i=1}(X_i-\bar{X_i})^2] σ2=n11[i=1n(XiXiˉ)2]

证明:
首先回顾方差期望的知识:

1.独立变量X和Y,期望值满足: E ( X Y ) = E X ∗ E Y E(XY)=EX*EY E(XY)=EXEY
可以通过期望独立的定义得出。
独立变量乘积的期望值的证明

2.方差、期望、协方差的性质总结
由独立变量之间的方差的线性性质,容易得到 X ˉ \bar{X} Xˉ的方差:
V a r ( X ˉ ) = 1 n V a r ( X ) Var(\bar{X})=\frac{1}{n}Var(X) Var(Xˉ)=n1Var(X)
证明在此。
或者写作:
σ ( X ˉ ) 2 = 1 n σ ( X ) 2 \sigma(\bar{X})^2=\frac{1}{n}\sigma(X)^2 σ(Xˉ)2=n1σ(X)2

3.二阶中心距:
V a r ( X ) = E ( X 2 ) − ( E ( X ) ) 2 Var(X)=E(X^2)-(E(X))^2 Var(X)=E(X2)(E(X))2,可得:
E ( X 2 ) = V a r ( X ) + ( E ( X ) ) 2 = σ 2 + μ 2 E(X^2) = Var(X) + (E(X))^2 = \sigma^2+\mu^2 E(X2)=Var(X)+(E(X))2=σ2+μ2
同理对于 X ˉ \bar{X} Xˉ,则有:
E ( X ˉ 2 ) = V a r ( X ˉ ) + ( E ( X ˉ ) ) 2 = 1 n σ 2 + μ 2 E(\bar{X}^2) = Var(\bar{X}) + (E(\bar{X}))^2 = \frac{1}{n}\sigma^2+\mu^2 E(Xˉ2)=Var(Xˉ)+(E(Xˉ))2=n1σ2+μ2

4.无偏估计知识的复习:

无偏估计的定义是:对随机变量 θ \theta θ的估计是 θ ^ \hat{\theta} θ^,如果 E ( θ ^ ) = E ( θ ) E(\hat{\theta})=E(\theta) E(θ^)=E(θ),则称 θ ^ \hat{\theta} θ^ θ \theta θ的无偏估计。

首先,方差的定义应该是 1 n [ ∑ i = 1 n ( X i − μ ) 2 ] \frac{1}{n}[\sum^{n}_{i=1}(X_i-\mu)^2] n1[i=1n(Xiμ)2],其中 μ = E ( X i ) \mu=E(X_i) μ=E(Xi)

注意,关键在于,我们不知道 μ \mu μ,只有 X ˉ \bar{X} Xˉ,但是 X ˉ \bar{X} Xˉ 不等于 μ \mu μ

我们先根据我们现有的 X i X_i Xi X ˉ \bar{X} Xˉ来计算 ∑ i = 1 n ( X i − X i ˉ ) 2 \sum^{n}_{i=1}(X_i-\bar{X_i})^2 i=1n(XiXiˉ)2的期望。

E ( ∑ i = 1 n ( X i − X ˉ ) 2 ) E(\sum^{n}_{i=1}(X_i-\bar{X})^2) E(i=1n(XiXˉ)2)
= E ( ∑ i = 1 n ( X i 2 − 2 X ˉ X i + X ˉ 2 ) =E(\sum^{n}_{i=1}(X_i^2-2\bar{X}X_i+\bar{X}^2) =E(i=1n(Xi22XˉXi+Xˉ2)
= E ( ∑ i = 1 n X i 2 ) − E ( ∑ i = 1 n 2 X ˉ X i ) + E ( ∑ i = 1 n X ˉ 2 ) =E(\sum^{n}_{i=1}X_i^2)-E(\sum^{n}_{i=1}2\bar{X}X_i)+E(\sum^{n}_{i=1}\bar{X}^2) =E(i=1nXi2)E(i=1n2XˉXi)+E(i=1nXˉ2)
= ∑ i = 1 n E ( X i 2 ) − 2 E ( X ˉ ∑ i = 1 n X i ) + ∑ i = 1 n E ( X ˉ 2 ) =\sum^{n}_{i=1}E(X_i^2)-2E(\bar{X}\sum^{n}_{i=1}X_i)+\sum^{n}_{i=1}E(\bar{X}^2) =i=1nE(Xi2)2E(Xˉi=1nXi)+i=1nE(Xˉ2)
= ∑ i = 1 n E ( X i 2 ) − 2 E ( X ˉ ∑ i = 1 n X i ) + n ⋅ E ( X ˉ 2 ) =\sum^{n}_{i=1}E(X_i^2)-2E(\bar{X}\sum^{n}_{i=1}X_i)+n \cdot E(\bar{X}^2) =i=1nE(Xi2)2E(Xˉi=1nXi)+nE(Xˉ2)

其中第二项可以改写为:
2 E ( X ˉ ∑ i = 1 n X i ) = 2 E ( X ˉ ⋅ n X ˉ ) = 2 n ⋅ E ( X ˉ 2 ) 2E(\bar{X}\sum^{n}_{i=1}X_i)=2E(\bar{X}\cdot n\bar{X})=2n\cdot E(\bar{X}^2) 2E(Xˉi=1nXi)=2E(XˉnXˉ)=2nE(Xˉ2)
带入回去,第二三项合并得到:
E ( ∑ i = 1 n ( X i − X ˉ ) 2 ) = ∑ i = 1 n E ( X i 2 ) − n ⋅ E ( X ˉ 2 ) E(\sum^{n}_{i=1}(X_i-\bar{X})^2)=\sum^{n}_{i=1}E(X_i^2)-n \cdot E(\bar{X}^2) E(i=1n(XiXˉ)2)=i=1nE(Xi2)nE(Xˉ2)
将第3点的中心距带入:
E ( ∑ i = 1 n ( X i − X ˉ ) 2 ) = ∑ i = 1 n ( σ 2 + μ 2 ) − n ⋅ ( 1 n σ 2 + μ 2 ) E(\sum^{n}_{i=1}(X_i-\bar{X})^2)=\sum^{n}_{i=1}(\sigma^2+\mu^2)-n \cdot (\frac{1}{n}\sigma^2+\mu^2) E(i=1n(XiXˉ)2)=i=1n(σ2+μ2)n(n1σ2+μ2)
= n ( σ 2 + μ 2 ) − n ( 1 n σ 2 + μ 2 ) =n(\sigma^2+\mu^2)-n(\frac{1}{n}\sigma^2+\mu^2) =n(σ2+μ2)n(n1σ2+μ2)
= ( n − 1 ) σ 2 =(n-1)\sigma^2 =(n1)σ2
我们希望得到的是 σ \sigma σ,而我们可以算出的是 E ( ∑ i = 1 n ( X i − X ˉ ) 2 ) E(\sum^{n}_{i=1}(X_i-\bar{X})^2) E(i=1n(XiXˉ)2)。因此,只要我们最开始的公式中加一个 1 / ( n − 1 ) 1/(n-1) 1/(n1),就能无偏的计算出方差。
因此,无偏的方差应该是:
σ 2 = 1 n − 1 [ ∑ i = 1 n ( X i − X i ˉ ) 2 ] \sigma^2 = \frac{1}{n-1}[\sum^{n}_{i=1}(X_i-\bar{X_i})^2] σ2=n11[i=1n(XiXiˉ)2]

附:

《概率论与数理统计教程》茆诗松 高等教育出版社: P296
无偏估计:对于总体,样本均值是总体均值的无偏估计,如果k阶原点距期望存在,则样本的k阶原点矩也是无偏估计, 但中心距不是。
但不具有不变性,即:若 θ ^ \hat{\theta} θ^ θ \theta θ的无偏估计, g ( θ ^ ) g(\hat{\theta}) g(θ^)不一定是 g ( θ ) g(\theta) g(θ)的无偏估计,除非是线性函数。

  • 33
    点赞
  • 93
    收藏
    觉得还不错? 一键收藏
  • 6
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值