快速搞懂无偏估计及样本方差中的n-1

文章讨论了样本的期望和方差与总体期望和方差的关系,指出样本均值是总体均值的无偏估计,而样本方差经过调整后(n-1分之一)才是总体方差的无偏估计。此外,还解释了独立样本之间的相互独立性和如何利用样本信息来估计总体参数。
摘要由CSDN通过智能技术生成
  1. 期望EX,方差DX
    我们知道任一样本和总体是同分布的,所以任一样本的期望即总体期望(均值),任一样本的方差即总体方差。所以对于任一样本X,有: E X = μ , E ( c X ) = c E X , E ( c ) = c D X = E ( X − E X ) 2 = E ( X 2 − 2 X μ + μ 2 ) = E X 2 − μ 2 = σ 2 D ( c ) = 0 , D ( c X ) = c 2 D X EX = \mu ,E(cX) = cEX,E(c) = c\\DX = E{(X - EX)^2}\\{\rm{ = }}E({X^2} - 2X\mu + {\mu ^2})\\{\rm{ }} = E{X^2} - {\mu ^2} = {\sigma ^2}\\D(c) = 0,D(cX) = {c^2}DX EX=μ,E(cX)=cEX,E(c)=cDX=E(XEX)2=E(X22Xμ+μ2)=EX2μ2=σ2D(c)=0,D(cX)=c2DX其中, μ , c , σ 2 \mu ,c,{\sigma ^2} μ,c,σ2均为常数。由于样本是随机选取的,所以这里隐含了一个假设:两个不同的样本X和Y相互独立,此时 E X Y = E X E Y EXY = EXEY EXY=EXEY
    X ˉ {\bar X} Xˉ为样本均值,则有: E X ˉ = 1 n ∑ i = 1 n E X i = μ , D X ˉ = 1 n 2 ∑ i = 1 n D X i = σ 2 n D X ˉ = E ( X ˉ − E X ˉ ) 2 = E X ˉ 2 − μ 2 E X ˉ 2 = μ 2 + D X ˉ = μ 2 + σ 2 n E\bar X = \frac{1}{n}\sum\limits_{i = 1}^n {E{X_i}} = \mu ,D\bar X = \frac{1}{{{n^2}}}\sum\limits_{i = 1}^n {D{X_i}} = \frac{{{\sigma ^2}}}{n}\\D\bar X = E{(\bar X - E\bar X)^2} = E{{\bar X}^2} - {\mu ^2}\\E{{\bar X}^2} = {\mu ^2} + D\bar X = {\mu ^2} +\frac{{{\sigma ^2}}}{n} EXˉ=n1i=1nEXi=μ,DXˉ=n21i=1nDXi=nσ2DXˉ=E(XˉEXˉ)2=EXˉ2μ2EXˉ2=μ2+DXˉ=μ2+nσ2 S 2 = 1 n ∑ i = 1 n ( X i − μ ) 2 {S^2} = \frac{1}{n}\sum\limits_{i = 1}^n {{{(X_i - \mu )}^2}} S2=n1i=1n(Xiμ)2为样本方差,则 E S 2 = 1 n ∑ i = 1 n E ( X i − μ ) 2 = σ 2 E{S^2} = \frac{1}{n}\sum\limits_{i = 1}^n {E{{(X_i - \mu )}^2}} = {\sigma ^2} ES2=n1i=1nE(Xiμ)2=σ2
  2. 估计量
    我们已经知道样本均值的期望等于总体均值,样本方差的期望等于总体方差。然而,在现实中,样本的总体均值一般难以求得,这就需要求总体的估计(量)了。统计学中的估计量是对整体样本的一个估计量,比如要统计一百万人的平均身高,一个个统计是不现实的,此时可以用样本均值来代替这一百万人(总体)身高的平均值,即:随机抽取一些人,比如100个,那么就可以用这100个人的身高的平均值来代替总体均值。然而,它是有条件的,只有当样本均值的期望等于总体均值时,才可用样本均值来代替总体均值,此时的样本均值称为总体的一个无偏估计,若该样本均值的期望不等于总体均值则是有偏估计。方差同理,当一个样本方差的期望等于总体方差时,该样本方差是总体的一个无偏估计,否则是有偏估计。
  3. 总体方差的无偏估计
    我们知道在现实中,样本的总体均值一般难以求得,所以理论上的样本方差不适用,只能用样本均值来代替样本方差中的 μ \mu μ,而为了使新的样本方差仍然是总体方差的无偏估计,我们有: E S 2 = E 1 m ∑ i = 1 n ( X i − X ˉ ) 2 = σ 2 E{S^2} = E\frac{1}{m}\sum\limits_{i = 1}^n {{{(X_i - \bar X)}^2}} = {\sigma ^2} ES2=Em1i=1n(XiXˉ)2=σ2所以: E 1 m ∑ i = 1 n ( X i − X ˉ ) 2 = 1 m ∑ i = 1 n E ( X i − X ˉ ) 2 = 1 m ∑ i = 1 n [ E X i 2 − 2 E ( X i 1 n ∑ j = 1 n X j ) + E X ˉ 2 ] E\frac{1}{m}\sum\limits_{i = 1}^n {{{({X_i} - \bar X)}^2}} = \frac{1}{m}\sum\limits_{i = 1}^n {E{{({X_i} - \bar X)}^2}} \\{\rm{ }} = \frac{1}{m}\sum\limits_{i = 1}^n {[E{X_i}^2 - 2E({X_i}\frac{1}{n}\sum\limits_{j = 1}^n {{X_j}} ) + E{{\bar X}^2}]} Em1i=1n(XiXˉ)2=m1i=1nE(XiXˉ)2=m1i=1n[EXi22E(Xin1j=1nXj)+EXˉ2]由两个不同样本之间相互独立,得: 1 m ∑ i = 1 n [ E X i 2 − 2 E ( X i 1 n ∑ j = 1 n X j ) + E X ˉ 2 ] = 1 m ∑ i = 1 n [ E X i 2 − 2 n [ E X i 2 + ( n − 1 ) E 2 X i ] + E X ˉ 2 ] = 1 m ∑ i = 1 n [ μ 2 + σ 2 − 2 n [ μ 2 + σ 2 + ( n − 1 ) μ 2 ] + μ 2 + σ 2 n ] = 1 m ∑ i = 1 n n − 1 n σ 2 = n − 1 m σ 2 \frac{1}{m}\sum\limits_{i = 1}^n {[E{X_i}^2 - 2E({X_i}\frac{1}{n}\sum\limits_{j = 1}^n {{X_j}} ) + E{{\bar X}^2}]} \\= \frac{1}{m}\sum\limits_{i = 1}^n {[E{X_i}^2 - \frac{2}{n}[EX_i^2 + (n - 1){E^2}{X_i}] + E{{\bar X}^2}]} \\= \frac{1}{m}\sum\limits_{i = 1}^n {[{\mu ^2} + {\sigma ^2} - \frac{2}{n}[{\mu ^2} + {\sigma ^2} + (n - 1){\mu ^2}] + {\mu ^2} + \frac{{{\sigma ^2}}}{n}]} \\= \frac{1}{m}\sum\limits_{i = 1}^n {\frac{{n - 1}}{n}{\sigma ^2}} = \frac{{n - 1}}{m}{\sigma ^2} m1i=1n[EXi22E(Xin1j=1nXj)+EXˉ2]=m1i=1n[EXi2n2[EXi2+(n1)E2Xi]+EXˉ2]=m1i=1n[μ2+σ2n2[μ2+σ2+(n1)μ2]+μ2+nσ2]=m1i=1nnn1σ2=mn1σ2显然, m = n − 1 m = n - 1 m=n1,所以总体方差的无偏估计为 S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ˉ ) 2 {S^2} = \frac{1}{{n - 1}}\sum\limits_{i = 1}^n {{{(X_i - \bar X)}^2}} S2=n11i=1n(XiXˉ)2
  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

技术卷

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值