回归预测模型评估指标(MSE、RMSE、MAE)

本文深入探讨了回归预测模型的评估指标,包括均方误差(MSE)、均方根误差(RMSE)和平均绝对误差(MAE)。这些指标用于量化模型预测值与实际值之间的差距,数值越小表明模型预测效果越好。理解并有效应用这些度量标准对于优化模型性能至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

回归预测模型准确性和预测性能的评估指标:均方误差(MSE)、均方根误差(RMSE)和平均绝对误差(MAE)。其计算公式及含义如下图所示:


其中,yt表示测试集中实际打分值,ytp表示模型输出的预测打分值,n表示测试集图片数据的总量。MSE、RMSE和MAE这三个指标的正常数值范围为0到正无穷,其值越小表示实际值与预测值之间的误差值越小,模型的预测效果越好。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值