1.3 距离度量

1 距离公式的基本性质

1.3 距离度量

学习目标

  • 目标
    • 了解距离公式的基本性质
    • 知道机器学习中常见的距离计算公式

1 距离公式的基本性质

在机器学习过程中,对于函数 dist(.,.)dist(., .)dist(.,.),若它是一"距离度量" (distance measure),则需满足一些基本性质:

  • 非负性: dist(Xi,Xj)>=0dist(X_i,X_j) >= 0dist(Xi,Xj)>=0
  • 同一性:dist(xi,xj)=0dist(x_i,x_j)=0dist(xi,xj)=0。当且仅当 Xi=XjX_i = X_jXi=Xj

  • 对称性: dist(xi,xj)=dist(xj,xi)dist(x_i,x_j)=dist(x_j,x_i)dist(xi,xj)=dist(xj,xi)

  • 直递性: dist(xi,xj)<=dist(xi,xk)+dist(xk,xj)dist(x_i,x_j) <= dist(x_i,x_k) +dist(x_k,x_j) dist(xi,xj)<=dist(xi,xk)+dist(xk,xj)

直递性常被直接称为“三角不等式”。

2 常见的距离公式

2.1 欧式距离(Euclidean Distance):

欧氏距离是最容易直观理解的距离度量方法,我们小学、初中和高中接触到的两个点在空间中的距离一般都是指欧氏距离。在这里插入图片描述

举例:

2.2 曼哈顿距离(Manhattan Distance):

在曼哈顿街区要从一个十字路口开车到另一个十字路口,驾驶距离显然不是两点间的直线距离。这个实际驾驶距离就是“曼哈顿距离”。曼哈顿距离也称为“城市街区距离”(City Block distance)。

在这里插入图片描述

2.3 切比雪夫距离 (Chebyshev Distance):

国际象棋中,国王可以直行、横行、斜行,所以国王走一步可以移动到相邻8个方格中的任意一个。国王从格子(x1,y1)走到格子(x2,y2)最少需要多少步?这个距离就叫切比雪夫距离。

在这里插入图片描述

2.4 闵可夫斯基距离(Minkowski Distance):

闵氏距离不是一种距离,而是一组距离的定义,是对多个距离度量公式的概括性的表述。

两个n维变量a(x11,x12,…,x1n)与b(x21,x22,…,x2n)间的闵可夫斯基距离定义为:

在这里插入图片描述

其中p是一个变参数:

  • 当p=1时,就是曼哈顿距离;

  • 当p=2时,就是欧氏距离;

  • 当p→∞时,就是切比雪夫距离。

根据p的不同,闵氏距离可以表示某一类/种的距离。

小结:

1 闵氏距离,包括曼哈顿距离、欧氏距离和切比雪夫距离,都存在明显的缺点:

e.g. 二维样本(身高[单位:cm],体重[单位:kg]),现有三个样本:a(180,50),b(190,50),c(180,60)。

a与b的闵氏距离(无论是曼哈顿距离、欧氏距离或切比雪夫距离)等于a与c的闵氏距离。但实际上身高的10cm并不能和体重的10kg划等号。

2 闵氏距离的缺点:

(1)将各个分量的量纲(scale),也就是“单位”相同的看待了;

(2)未考虑各个分量的分布(期望,方差等)可能是不同的。


【拓展】其他距离公式

3 “连续属性”和“离散属性”的距离计算

我们常将属性划分为"连续属性" (continuous attribute)和"离散属性" (categorical attribute),前者在定义域上有无穷多个可能的取值,后者在定义域上是有限个取值.

  • 若属性值之间存在序关系,则可以将其转化为连续值,例如:身高属性“高”“中等”“矮”,可转化为{1, 0.5, 0}。
    • 闵可夫斯基距离可以用于有序属性。
  • 若属性值之间不存在序关系,则通常将其转化为向量的形式,例如:性别属性“男”“女”,可转化为{(1,0),(0,1)}。

4 小结

  • 1 距离公式的基本性质:非负性、统一性、对称性、直递性【了解】
  • 2 常见距离公式
    • 2.1 欧式距离(Euclidean Distance)【知道】:
      • 通过距离平方值进行计算
    • 2.曼哈顿距离(Manhattan Distance)【知道】:
      • 通过距离的绝对值进行计算
    • 3.切比雪夫距离 (Chebyshev Distance)【知道】:
      • 维度的最大值进行计算
    • 4.闵可夫斯基距离(Minkowski Distance)【知道】:
      • 当p=1时,就是曼哈顿距离;
      • 当p=2时,就是欧氏距离;
      • 当p→∞时,就是切比雪夫距离。
  • 3 属性【知道】
    • 连续属性
    • 离散属性,
      • 存在序关系,可以将其转化为连续值
      • 不存在序关系,通常将其转化为向量的形式
在交换机或路由器配置中,`ip route` 命令用于指定静态路由。这里的命令涉及到两条默认路由(default route),它们的目标网络都是 `0.0.0.0 0.0.0.0`,意味着这是通往未知目的地的最后手段,默认将流量发送到下一跳地址。 让我们逐步分析这两组命令之间的区别: 1. **第一种组合** ``` ip route 0.0.0.0 0.0.0.0 21.58.9.3 ip route 0.0.0.0 0.0.0.0 21.58.1.3 ``` 这里配置了两个相同的默认路由目标(`0.0.0.0 0.0.0.0`),但分别指向了不同的下一跳 IP 地址 (`21.58.9.3` 和 `21.58.1.3`)。通常情况下,只有第一条生效,除非启用了负载均衡或其他策略来分发流量。如果没有特别配置,则第二条会冗余无效。 2. **第二种组合** ``` ip route 0.0.0.0 0.0.0.0 21.58.1.3 ip route 0.0.0.0 0.0.0.0 21.58.9.3 ``` 此处只是上下顺序颠倒了一下而已,并不影响实质意义。同样地,默认只会有一个有效,具体取决于设备如何处理多条默认路由的情况。 --- ### 配置解释 #### 默认路由的作用 - 当数据包的目的地址无法匹配其他更具体的路由表项时,就会使用默认路由将其转发出去。 - 上述两组命令实际上都试图提供两个潜在出口选项给未知目的地址的数据流选择走哪一边儿离开本局域网区域前往外部广袤世界探索奇遇去了呢~ #### 关键差异在哪里? 其实上述四行语句内容一致只是书写形式略有变化罢了~真正决定是否能够实现某些特殊需求的关键要素在于以下几个方面: 1. 管理距离 (Administrative Distance): 每一种类型的协议都有一个关联数值表示相对可靠性高低等级关系等信息帮助判断到底应该相信谁说的东西才靠谱点儿哦亲~一般来说像直连链路啥的是最可信哒然后就是静态路由接着才是动态获取之类的方式啦... 2. 度量值 (Metric Value): 如果存在多个来源相同但路径长度不一样的话也可能会影响到最终选路结果哟!不过对于我们这里讨论的例子而言因为全是零嘛所以没啥差别啦哈哈哈~ 3. 设备自身算法: 不同品牌型号的产品内部实现原理不尽相同有时候即使表面上看过去一样的东西背后运作机制却大相径庭需要查阅对应手册才能搞清楚具体情况才行咯! 总之啊,在常规环境下简单添加这么几句话基本没有什么实质性影响可言,但是如果想要玩出花活比如做些高级玩意儿诸如ECMP(Equal Cost Multi Path)之类的那就得好好研究一下相关知识领域再动手实践一番啰~ ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Fishel-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值