数学建模常用模型(一):灰色预测法

文章介绍了灰色预测法,一种适用于处理少量数据和非线性系统的预测方法。重点讲解了GM(1,1)模型的构建过程,包括累加生成、模型求解和精度检验,提供了MATLAB代码示例进行预测值计算,并提到了后验差检验法作为精度评估手段。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数学建模常用模型(一):灰色预测法

灰色预测法是一种用于处理少量数据、数据质量较差或者缺乏历史数据的预测方法。它适用于一些非线性、非平稳的系统,尤其在短期预测和趋势分析方面有着广泛的应用。灰色预测法作为一种强大的数学建模工具,通过利用有限的信息,能够在不完备的条件下进行准确的预测。它在许多领域都得到广泛应用,并且随着灰色系统理论的发展,它的应用前景将更加广阔。
在这里插入图片描述

1. 灰色系统理论简介

灰色预测法(Gray Forecasting Method)是一种基于少量、不完全信息的数学建模方法,用于预测未来的发展趋势。通过科学的方法分析事物的过去和现在,揭示出其中的发展规律,从而进行准确的预测。

2. 灰色系统的特点

灰色系统理论运用灰色数学处理不确定性量化问题,并充分利用已知信息,寻求系统运动规律。其独特之处在于适用于处理信息匮乏的系统。

3. 灰色生成

灰色生成是通过对原始数据进行特定要求的处理,揭示出数据背后的内在规律。常用的生成方法包括累加生成、累减均值生成和级比生成。

4. 累加生成简介

累加生成是一种关键方法,通过对原始数据列进行逐项累加,将灰色过程由灰色转变为白色,突显数据的积分特性和规律。
在这里插入图片描述

5. GM(1,1)模型

GM(1,1)模型是灰色预测法中常用的模型之一。它通过对原始数据进行累加生成,建立灰色微分方程,并通过求解方程来得到准确的预测值。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

6. 预测值的求解

在这里插入图片描述

7. GM(1,1)模型精度检验

在选择模型后,对其进行精度检验以验证其合理性是必要的。常用的灰色模型精度检验方法包括相对误差大小检验法、关联度检验法和后验差检验法。下面主要介绍后验差检验法:
在这里插入图片描述
计算残差得:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

8. 灰度通用代码

function []=huidu()
% 本程序主要用来计算根据灰色理论建立的模型的预测值。
% 应用的数学模型是 GM(1,1)。
% 原始数据的处理方法是一次累加法
y=input("请输入数据);
n=length(y);
yy=ones(n,1);
yy(1)=y(1);
for i=2:n
	
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

红狐狸的北北记

红狐狸背着行囊上路,感谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值