Origin绘制PCA的置信椭圆图
一、什么是置信椭圆
在一维的点估计问题上,在总体
X
X
X的分布函数已知,但有一个或多个参数未知的情况下,可以借助于总体
X
X
X的一个样本来估计总体未知参数的值。在求出未知参数的点估计值
θ
^
\hat{\theta}
θ^外,我们还希望得到它的一个估计范围以及这个估计范围中包含参数
θ
{\theta}
θ真值的可信程度,用区间的形式去表示这个估计范围称为置信区间,这种可信程度的概率为置信水平,这种形式的估计称为区间估计。
以上是一维情况置信区间的表示,可以描述为某一个值落在某个区间的概率,这个区间在几何上可以表示为一个线段。对于二维的情况,线段会变成一个平面,和置信区间的表示意义是类似的,这就是置信椭圆。
参考:https://blog.csdn.net/Gou_Hailong/article/details/129383938
二、在Origin中安装插件:2D Confidence Ellipse
在origin官网originlab中下载插件后直接拖入origin界面即可。
三、在origin中绘制置信椭圆
在利用PCA对数据进行降维时,对图中的数据点绘制置信椭圆可以更直观的看出不同种类型的数据分布情况。
利用外部生成的人工数据表示PCA降维后的数据:
import numpy as np
form pandas import DataFrame
x = np.arange(50).reshape(50,1)
y1 = np.random.normal(loc=1.0, scale=0.2,size =(1, 50)).T#生成均值为1,正态分布
y2 = np.random.normal(loc=0, scale=0.1,size =(1, 50)).T
xyy = np.concatenate([x,y1,y2],axis=1)
df=DataFrame(xyy)
df.to_csv('D://pythonclass//testdata1.txt',sep='\t',index=False)
将txt格式的数据文件直接拖拽到origin界面,数据会自动导入
选择散点图绘制图像,先选择需要绘制图像的数据,在【绘图】中选择散点图即可
在右边的对象管理器中选择下载好的插件“2D Confidence Ellipse”;
参数选择默认OK即可
此时绘制的图像可能有些异常,对象管理器中的Layer进行右击,选择列表中的绘图细节,进行尺寸调整。
如果调整layer的尺寸仍有问题,还需要调整graph层的尺寸大小,可以画出如下的图像
要是需要对椭圆内部图像的颜色进行填充,可以双击图中的Ellipse进行操作,先选择线的颜色,再选择想要填充的颜色
可以得到以下的图形,要注意不要选择跟随线条透明度,不然会将图上的点覆盖住