Origin绘制边际直方图

边际直方图

一维的直方图,单个变量的分布曲线,如正态分布分布的直方图是我们很常见的边际直方图。
在二维的情况下,我们也可以绘制边际直方图,用下面的图来看

可以看到不同类模型之间变量的分布曲线,可以直观看到不同类模型不同变量的变化趋势和聚集趋势。

origin绘制边际直方图

首先在全选需要绘图的数据,选择【绘图】——【统计图】——【边际直方图】

在这里插入图片描述

可以得到一个简单的图形

接下来我们对这个图形进行美化,可以对图形的颜色,线条宽度等属性进行修改之外,还可以直方图增加正态分布拟合曲线,可以是线型的,也可以填充形式
在这里插入图片描述

可以得到下面这样具有分布曲线的图

也可以对分布曲线进行填充

在这里插入图片描述

接着可以对图中的散点进行分析,在【分析】——【拟合】——【线性拟合】

最后可以对图形进一步加工美化。

### 如何使用 Origin 软件绘制直方图 在科学数据分析中,Origin 是一款功能强大的绘图和分析软件。为了创建高质量的直方图,以下是具体的操作指南: #### 准备工作 确保已安装并启动最新版本的 Origin 应用程序。 #### 导入数据集 通过文件菜单中的导入命令加载实验或者模拟得到的数据到工作表里。支持多种格式如 Excel、CSV 等[^1]。 #### 创建直方图 - 选中目标列之后点击菜单栏上的 Plot (绘图) -> Statistics (统计学) 下拉列表里的 Histogram + Probabilities 或者仅选择 Histogram 来生成默认设置下的图形。 - 对于更复杂的自定义需求,可以在弹出对话框内调整 bin 的宽度以及数量等参数以优化视觉效果[^2]。 #### 自定义样式 完成初步构建后还可以进一步美化图表外观: - 修改填充颜色、边线属性; - 添加标题说明文字标签; - 设置坐标轴刻度范围与间隔大小; - 插入参考线辅助解读趋势特征[^3]。 ```python import numpy as np from matplotlib import pyplot as plt # 示例代码用于理解概念而非实际操作步骤 data = np.random.normal(loc=0, scale=1, size=1000) plt.figure(figsize=(8,6)) n, bins, patches = plt.hist(x=data, bins='auto', color='#0504aa', alpha=0.7, rwidth=0.85) plt.grid(axis='y') plt.xlabel('Value') plt.ylabel('Frequency') plt.title('Histogram Example') plt.show() ``` 此段 Python 代码展示了如何利用 Matplotlib 库制作简单的单变量频率分布直方图,供对比学习之用,并不适用于 Origin 中的实际应用过程[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值