原创首发于CSDN,转载请注明出处(CSDN:古希腊的汉密士),谢谢!
文章目录
一、经典数列求和题
∑ i = 1 n n 2 = 1 6 n ( n + 1 ) ( 2 n + 1 ) = 1 3 n 3 + 1 2 n 2 + 1 6 n \displaystyle\sum_{i=1}^{n} n^2= \frac{1}{6}{n}{(n+1)(2n+1)}=\frac{1}{3}n^3+\frac{1}{2}n^2+\frac{1}{6}n i=1∑nn2=61n(n+1)(2n+1)=31n3+21n2+61n
这是一道的经典的高中数学测试题。对于全体自然数的平方我们可以求出和的数值,那么我们能否求出对于所有自然数的任意 k k k 次方之和?
∑ i = 1 n n k = 1 k + 2 k + . . . + n k = ? \displaystyle\red{\sum_{i=1}^{n} n^k=1^k+2^k+...+n^k=?} i=1∑nnk=1k+2k+...+nk=?
换个角度思考,对次幂 K K K 取某个确定的数值时,我们能否有一套通用的计算方式?下面我们从最开始的平方开始推导。
二、解法1:表格法 —— 从自然数和到自然数平方和
用 A ( n ) A(n) A(n) 、 B ( n ) B(n) B(n)、 C ( n ) C(n) C(n) 分别表示自然数、自然数平方、自然数立方的前 n 项和,我们以全体自然数前 n 项之和
A ( n ) = 1 2 n ( n + 1 ) A(n)=\frac{1}{2}n(n+1) A(n)=21n(n+1)
为研究问题的出发点进行较小数值的计算。
n | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
A(n) | 1 | 3 | 6 | 10 | 15 | 21 |
B(n) | 1 | 5 | 14 | 30 | 55 | 91 |
C(n) | 1 | 9 | 36 | 100 | 225 | 441 |
从表格内的数据可以观察到,对于每一个 C ( n ) C(n) C(n) 恰好为 A ( n ) A(n) A(n) 的平方,可推测出
C ( n ) = [ A ( n ) ] 2 = 1 4 n 2 ( n + 1 ) 2 \color{red} C(n) = [ A(n) ]^2 = \frac{1}{4}n^2(n+1)^2 C(n)=[A(n)]2=41n2(n+1)2
受以上公式的启发,为了得到 B ( n ) B(n) B(n) 的公式,我们可以计算 B ( n ) B(n) B(n) 与 A ( n ) A(n) A(n) 的比值
n | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
B ( n ) A ( n ) \frac{B(n)}{A(n)} A(n)B(n) | 1 | 5 3 \frac{5}{3} 35 | 7 3 \frac{7}{3} 37 | 9 3 \frac{9}{3} 39 | 11 3 \frac{11}{3} 311 | 19 3 \frac{19}{3} 319 |
由数值的比值计算结果,可以推测出
B ( n ) A ( n ) = 1 3 ( 2 n + 1 ) . \frac{B(n)}{A(n)}=\frac{1}{3}(2n+1). A(n)B(n)=31(2n+1).
于是,自然地得到全体自然数平方和公式
B ( n ) = 1 6 n ( n + 1 ) ( 2 n + 1 ) \color{red} B(n)=\frac{1}{6}n(n+1)(2n+1) B(n)=61n(n+1)(2n+1)
三、解法2:函数法 f ( n ) − f ( n − 1 ) = n 2 f(n)-f(n-1)=n^2 f(n)−f(n−1)=n2
所有自然数的二次幂前 N N N 项之和减去前 N − 1 N-1 N−1 项之和为
S n − S n − 1 = n 2 S_n-S_{n-1}=n^2 Sn−Sn−1=n2
若函数 f ( n ) f(n) f(n) 满足 f ( n ) − f ( n − 1 ) = n 2 f(n)-f(n-1)=n^2 f(n)−f(n−1)=n2,存在
S n = [ f ( 1 ) − f ( 0 ) + ⋯ + f ( n ) − f ( n − 1 ) ] = f ( n ) − f ( 0 ) S_n=[f(1)-f(0)+\dots+f(n)-f(n-1)]=f(n)-f(0) Sn=[f(1)−f(0)+⋯+f(n)−f(n−1)]=f(n)−f(0)
分析:
- 当 f ( 0 ) = 0 f(0)=0 f(0)=0 时, S n = f ( n ) S_n=f(n) Sn=f(n);
- 当 f ( n ) f(n) f(n) 是多项式, f ( n ) − f ( n − 1 ) f(n)-f(n-1) f(n)−f(n−1) 也是多项式且次数降一。(关键!!!)
解:设存在函数
S n = f ( n ) = a n + b n 2 + c n 3 S_n=f(n)= an+bn^2+cn^3 Sn=f(n)=an+bn2+cn3
满足 n 2 = f ( n ) − f ( n − 1 ) n^2=f(n)-f(n-1) n2=f(n)−f(n−1),有
∑ i = 1 n n 2 = f ( n ) − f ( n − 1 ) = ( a − b + c ) + ( 2 b − 3 c ) n + 3 c n 2 \displaystyle\sum_{i=1}^{n} n^2=f(n)-f(n-1)=(a-b+c)+(2b-3c)n+3cn^2 i=1∑nn2=f(n)−f(n−1)=(a−b+c)+(2b−3c)n+3cn2
由上式可推导出方程组
{
a
−
b
+
c
=
0
2
b
−
3
c
=
0
3
c
=
1
\begin{cases} a-b+c=0\\2b-3c=0\\3c=1\\ \end{cases}
⎩
⎨
⎧a−b+c=02b−3c=03c=1
解得
c
=
1
3
,
b
=
1
2
,
a
=
1
6
c=\frac{1}{3},b=\frac{1}{2},a=\frac{1}{6}
c=31,b=21,a=61
故
S n = 1 3 n 3 + 1 2 n 2 + 1 6 n S_n=\frac{1}{3}n^3+\frac{1}{2}n^2+\frac{1}{6}n Sn=31n3+21n2+61n
一通百通,按照以上方法求出全体自然数三次幂之和 ∑ i = 1 n n 3 \displaystyle\sum_{i=1}^{n} n^3 i=1∑nn3,所有自然数四次幂之和 ∑ i = 1 n n 4 \displaystyle\sum_{i=1}^{n} n^4 i=1∑nn4,乃至K次幂之和 ∑ i = 1 n n K \displaystyle\sum_{i=1}^{n} n^K i=1∑nnK。
二次之和用
S
n
=
f
(
n
)
=
a
1
n
+
a
2
n
2
+
a
n
n
3
S_n=f(n)= a_1n+a_2n^2+a_nn^3
Sn=f(n)=a1n+a2n2+ann3相减。
三次之和用
S
n
=
f
(
n
)
=
a
1
n
+
a
2
n
2
+
a
3
n
3
+
a
4
n
4
S_n=f(n)= a_1n+a_2n^2+a_3n^3+a_4n^4
Sn=f(n)=a1n+a2n2+a3n3+a4n4相减。
四次之和用
S
n
=
f
(
n
)
=
a
n
+
a
1
n
2
+
a
3
n
3
+
a
4
n
4
+
a
5
n
5
S_n=f(n)= an+a_1n^2+a_3n^3+a_4n^4+a_5n^5
Sn=f(n)=an+a1n2+a3n3+a4n4+a5n5相减 。
⋮
\vdots
⋮
模仿求解:
∑ i = 1 n n 4 = 1 4 + 2 4 + . . . + n 4 \displaystyle\sum_{i=1}^{n} n^4=1^4+2^4+...+n^4 i=1∑nn4=14+24+...+n4
解: S n = f ( n ) = a 1 n + a 2 n 2 + a 3 n 3 + a 4 n 4 + a 5 n 5 S_n=f(n)=a_1n+a_2n^2+a_3n^3+a_4n^4+a_5n^5 Sn=f(n)=a1n+a2n2+a3n3+a4n4+a5n5,
推出
∑ i = 1 n n 4 = f ( n ) − f ( n − 1 ) \displaystyle\sum_{i=1}^{n} n^4=f(n)-f(n-1) i=1∑nn4=f(n)−f(n−1)
即
{
a
1
−
a
2
+
a
3
−
a
4
+
a
5
=
0
2
a
2
−
3
a
3
+
4
a
4
−
5
a
5
=
0
3
a
3
−
6
a
4
+
10
a
5
=
0
4
a
4
−
10
a
5
=
0
5
a
5
=
1
(
倒推求解,余下内容不做分析)
\begin{cases} a_1-a_2+a_3-a_4+a_5=0\\ 2a_2-3a_3+4a_4-5a_5=0\\ 3a_3-6a_4+10a_5=0\\ 4a_4-10a_5=0\\ 5a_5=1\\ \end{cases} (倒推求解,余下内容不做分析)
⎩
⎨
⎧a1−a2+a3−a4+a5=02a2−3a3+4a4−5a5=03a3−6a4+10a5=04a4−10a5=05a5=1(倒推求解,余下内容不做分析)
四、参考资料
- 北京航空航天大学线性代数启蒙课 李尚志教授
- “解法1:表格法” 一节源自《数学思想概论4:数学中的归纳推理》P143和P144
五、文章更新记录
- 首次在CSDN使用 markdown 极其不适应,耗费4小时。「2020.4.15 23:05」
- 初步对文章内容及版式做出大范围的修改。 「2021.3.5 17:29」
- 增加 “解法1:表格法(从 n n n 到 n 3 n^3 n3)” 一节。「2021.3.5 18:19」
- 增加“参考资料”一节。 「2021.3.5 22:21」
- 修改了几处数值错误。 「2021.3.6 10:17」
- 更改文章内容等级。「2022.6.14 14:16」
- 修改标题。「2022.11.5 9:48」
- 公开阅读权限。「2023.2.17 15:45」
P.S.1 使用微积分方法求和放在以后吧。 「2021.5.19 15:50」