线性代数从零开始详解笔记【线性方程组】

线性方程组

0.引言

  1. 在面对一个具体的问题时,一般而言我们会首先关注这个问题“有没有答案”——这就是所谓 「解的存在性」
  2. 如果所研究的问题是有答案的,进一步地我们会关心这个问题的“答案是不是只有一个”——这 就是所谓 「解的唯一性」
  3. 如果我们对上述两个问题的回答是:答案唯一地存在,那么接下来我们想要知道是否能有统一的 方法来找到这个解;如果我们的回答是:答案存在但是不唯一,我们就要问:能否把每一个答案 全部找到?并且能否说清楚这个问题不同答案之间的相互关系——换言之,我们想要研究线性方程组 「解的结构」

1. 解

正如引言所说的,我们研究是:解的存在性,解的唯一性,解的结构,这三者是解的核心。

  • 系数矩阵AA:只有系数组成
  • 增广系数矩阵Aˉ\bar{A}(带等号右边的常数)。

1.1 解和矩阵秩的关系

  • 唯一解:r(A)=r(Aˉ)=r(A)=r(\bar{A})=未知数个数(有解)
  • 无穷解:r(A)=r(Aˉ)<r(A)=r(\bar{A})<未知数个数(有解)
  • 无解:r(A)r(Aˉ)r(A)\neq r(\bar{A})

解题怎样判断秩是否相等?
第一步:写出Aˉ\bar{A}
第二步:只做初等行变换,把增广系数矩阵化成阶梯型,看非零行行数是否相同

接下来,我们除了能够判断解的情况,还能写出结果。

假如我们的增广系数矩阵化成:[10345011120000000000]\begin{bmatrix}1&0&3&4&5\\0&1&1&1&2\\0&0&0&0&0\\0&0&0&0&0\end{bmatrix},秩相同,所以有解,有四个未知量,所以有无穷解。

写出一般解:
{x1=53x34x4x2=2x3x4\begin{cases}x_1=5-3x_3-4x_4\\x_2=2-x_3-x_4\end{cases}

我们管x2,x3,x4x_2,x_3,x_4叫做自由未知量

像这种增广系数矩阵就是无解:

[112012004]\begin{bmatrix}1&-1&2\\0&1&2\\0&0&4\end{bmatrix}

2. 齐次线性方程组

2.1 零解和非零解

齐次线性方程组就是常数项是0的方程组。比如:{x1+x2=0x15x2=0\begin{cases}x_1+x_2=0\\x_1-5x_2=0\end{cases}

记住:齐次线性方程组一定有解,至少有0解

  • 零解:所有未知量都取0。
  • 非零解:解里面不全为0

至于一定有解也不难理解,当我们画出增广系数矩阵的时候,最右边都是0,增广系数矩阵和系数矩阵一样了。

所以,我们对于齐次方程组关心的焦点在于:是否有非零解

也就是关注r(A)和未知数个数n的关系

这里需要注意的是,因为有唯一解的时候就只有零解了,唯一的零解。

(以后n都代表未知数个数)

要想有非零解,就必须满足:r(A)<n,|A|=0

要是和可逆的性质挂钩的话:

  • 有非零解\Leftarrow\Rightarrow|A|=0\Leftarrow\Rightarrowr(A)<n\Leftarrow\RightarrowA不可逆
  • 有零解A0\Leftarrow\Rightarrow|A|\neq0\Leftarrow\RightarrowA可逆\Leftarrow\Rightarrowr(A)=n

例题:
已知向量组组成的齐次方程组:(1,3 0,5) (1,2,1,4) (1,1,2,3) (2,5,1,9) (1,-3,6,-1)

解:
x1a1+x2a2+x3a3+x4a4+x5a5=0x_1a_1+x_2a_2+x_3a_3+x_4a_4+x_5a_5=0
在这里插入图片描述

2.2 基础解系

当我们面临着非零解是个无穷多解的情况的时候,我们需要一组解来代表所有的解。

和极大线性无关组类似。

如何求基础解系?
根据我们上面求一般解的方法,首先写出系数矩阵和增广系数矩阵,然后进行初等行变换,化成行简化阶梯型,写出一般解。

基础解系的向量数量:s=nr(A)s=n-r(A),我们也叫基础解系里面有 s=nr(A)s=n-r(A) 个向量。

当我们把基础解系视作一个矩阵的话:BnsB_{ns}

例题1:(求基础解系)
Aˉ=(..)[109434140134745400000]{x1=94x3+34x414x5x2=34x3+74x454x5\bar{A}=(..)\rightarrow \begin{bmatrix}1&0&-\frac{9}{4}&-\frac{3}{4}&\frac{1}{4}\\0&1&\frac{3}{4}&-\frac{7}{4}&\frac{5}{4}\\0&0&0&0&0\end{bmatrix}\rightarrow \begin{cases}x_1=\frac{9}{4}x_3+\frac{3}{4}x_4-\frac{1}{4}x_5\\x_2=-\frac{3}{4}x_3+\frac{7}{4}x_4-\frac{5}{4}x_5\end{cases}

x3x4x5x_3,x_4,x_5属于自由未知量

我们对[x3x4x5]\begin{bmatrix}x_3\\x_4\\x_5\end{bmatrix}取一个极大线性无关组,最典型的是[100]\begin{bmatrix}1\\0\\0\end{bmatrix}[010]\begin{bmatrix}0\\1\\0\end{bmatrix}[001]\begin{bmatrix}0\\0\\1\end{bmatrix},代入可解得x1x_1x2x_2

最后的基础解系:η1=[9434100]η2=[3474010]η3=[1454001]\eta_1=\begin{bmatrix}\frac{9}{4}\\-\frac{3}{4}\\1\\0\\0\end{bmatrix},\eta_2=\begin{bmatrix}\frac{3}{4}\\-\frac{7}{4}\\0\\1\\0\end{bmatrix},\eta_3=\begin{bmatrix}-\frac{1}{4}\\-\frac{5}{4}\\0\\0\\1\end{bmatrix}

由于部分线性无关,之所以整体也线性无关,基础解系是线性无关的向量组。

特别注意:一定要化成行简化阶梯型而不是阶梯型,才能代入!!!
特别注意:一定要化成行简化阶梯型而不是阶梯型,才能代入!!!
特别注意:一定要化成行简化阶梯型而不是阶梯型,才能代入!!!

例题2:(秩和证明)
已知AmnA_{mn}BnsB_{ns}AB=0AB=0,证明:r(A)+r(B)nr(A)+r(B)\leq n

证明:
对B进行列分块处理:B=(B1B2B3...Bs)B=(B_1B_2B_3...B_s)
AB=A(B1B2B3...Bs)=(AB1AB2AB3...ABs)=(0,0,0...0)AB=A(B_1B_2B_3...B_s)=(AB_1AB_2AB_3...AB_s)=(0,0,0...0)

ABi=0(i=1,2,3,4...s)AB_i=0,(i=1,2,3,4...s)

所以,BiB_iAx=0Ax=0的解

【1】r(A)=nr(A)=n 唯一解 唯一零解,Bi=0B_i=0 所以 r(A)0r(A)\leq 0成立

【2】r(A)<nr(A)<n 有非零解,基础解系里面有nr(A)n-r(A) 个向量

我们知道 r(B)<min(n,s)r(B)<min(n,s)

r(B)snr(A)r(B)\leq s \leq n-r(A)
r(A)+r(B)nr(A)+r(B)\leq n

【重要!】我们需要记住这个结论,证明题常用:
AmnBns=0A_{mn}B_{ns}=0 满足 r(A)+r(B)nr(A)+r(B)\leq n

3. 非齐次线性方程组

3.1 导出组

我们对于齐次方程使用AX=0AX=0来表示,而对于非齐次线性方程组用AX=BAX=B,我们称AX=0是AX=B的导出组。

导出组的两个重要结论!!!

【1】假设 a1,a2a_1,a_2 是AX=B的解,那么a1a2a_1-a_2AX=0AX=0的解。

A(a1a2)=BB=0A(a_1-a_2)=B-B=0

【2】假设a0a_0AX=BAX=B的解,η\etaAX=0AX=0的解,则a0+ηa_0+\eta也是AX=BAX=B的解。

A(a0+η)=B+0=BA(a_0+\eta)=B+0=B

3.2 特解和通解

通解的意思就是通用的解,特解的意思是所有的解中的一种。

假如对于齐次方程而言,η\etaAX=0AX=0的通解,那么η=c1η1+c2η2+c3η3+...+cnrηnr\eta=c_1\eta_1+c_2\eta2+c_3\eta3+...+c_{n-r}\eta_{n-r},我们叫η1,η2...ηnr\eta_1,\eta_2...\eta_{n-r}非齐次方程的基础解系。

至于为什么是n-r,基础解系的数量=n-r

那对于非齐次方程而言,通解是什么?

根据上面导出组的【1】【2】结论,有非齐次方程组的通解:a0+ηa_0+\eta

a0a_0是非齐次方程的特解,η\eta是非齐次方程导出组的通解。)

所以,求非齐次方程组的通解需要两样东西:
(1)该非齐次方程的特解
(2)该齐次方程组的导出组的基础解系

例题1:(常规非齐次方程组的通解求法)

已知增广系数矩阵Aˉ=[15111121333811119377][103/713/713/7012/74/74/70000000000]\bar{A}=\begin{bmatrix}1&5&-1&-1&-1\\1&-2&1&3&3\\3&8&-1&1&1\\1&-9&3&7&7\end{bmatrix}\rightarrow\begin{bmatrix}1&0&3/7&13/7&13/7\\0&1&-2/7&-4/7&-4/7\\0&0&0&0&0\\0&0&0&0&0\end{bmatrix}

r(Aˉ)=r(A)=2<n=4r(\bar{A})=r(A)=2<n=4 有无穷解

写出导出组的基础解系先:
先不看常数列:

[103/713/7012/74/700000000]\begin{bmatrix}1&0&3/7&13/7\\0&1&-2/7&-4/7\\0&0&0&0\\0&0&0&0\end{bmatrix}

导出组的一般解:
{x1=3x3/713x4/7x2=2x3/7+4x4/7\begin{cases}x_1=-3x_3/7-13x_4/7\\x_2=2x_3/7+4x_4/7\end{cases}

x3,x4x_3,x_4是自由未知量,使用[10]\begin{bmatrix}1\\0\end{bmatrix}[01]\begin{bmatrix}0\\1\end{bmatrix}代入。

η1=[3/72/710]η2=[13/74/701]\eta_1=\begin{bmatrix}-3/7\\2/7\\1\\0\end{bmatrix}\eta_2=\begin{bmatrix}-13/7\\4/7\\0\\1\end{bmatrix}

η=c1η1+c2η2\eta=c_1\eta_1+c_2\eta_2

n=4,r=2,所以基础解系向量数量是2

然后我们把[x3=0x4=0]\begin{bmatrix}x_3=0\\x_4=0\end{bmatrix}代入

原方程的一般解:
{x1=13/73x3/713x4/7x2=4/7+2x3/7+4x4/7\begin{cases}x_1=-13/7-3x_3/7-13x_4/7\\x_2=-4/7+2x_3/7+4x_4/7\end{cases}

得出特解:a0=[13/74/700]a_0=\begin{bmatrix}13/7\\-4/7\\0\\0\end{bmatrix}

通解:a0+ηa_0+\eta

例题2:(非常规非齐次方程组的通解求法)
已知四元非齐次线性方程组的r(A)=3r(A)=3a1,a2,a3a_1,a_2,a_3是三个他的解,已知a1=(12,3,4,5)T,a2+a3=(1,2,3,4)Ta_1=(12,3,4,5)^T,a_2+a_3=(1,2,3,4)^T,求改方程组的通解?

解:
求通解,一定是求a0+ηa_0+\eta
现在很明显a0a_0我们是知道的,也就是说我们手上有一个特解了,我们只需要找出这个非齐次方程组的导出组的通解。

我们可以算出基础解系的向量数nr(A)=1n-r(A)=1

还记得在导出组的两个重要结论吗?

假设 a1a2a_1,a_2AX=BAX=B 的解,那么 a1a2a_1-a_2AX=0AX=0 的解

也就是a1a2a_1-a_2a1a2a_1-a_2都是导出组的解。

根据结论的延申,我们也可以推出:假设b1b_1b2b_2是AX=0的解,那么b1+b2b_1+b_2也是

所以说,2a1(a2+a3)=[241=2362=483=5104=6]2a_1-(a_2+a_3)=\begin{bmatrix}24-1=23\\6-2=4\\8-3=5\\10-4=6\end{bmatrix}是AX=B导出组的解,也就是η\eta

例题2拓展:(非常规非齐次方程组的通解求法)

已知四元非齐次线性方程组的r(A)=3r(A)=3a1,a2,a3a_1,a_2,a_3是三个他的解,已知a1=(12,3,4,5)T,a2+2a3=(1,2,3,4)Ta_1=(12,3,4,5)^T,a_2+2a_3=(1,2,3,4)^T,求改方程组的通解?

解:
在最后变换的时候注意一下,变成2a1(a2+2a3)2a_1-(a_2+2a_3)是导出组的解。

展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 程序猿惹谁了 设计师: 上身试试
应支付0元
点击重新获取
扫码支付

支付成功即可阅读