一、选择题(单)
本题共8小题,每小题5分,共40分。在每小题给出的四个选项中。只有一项是符合题目要求的。
1、集合
M
=
{
x
∣
x
<
2
}
M=\lbrace x|\sqrt{x}\lt2\rbrace
M={x∣x<2},
N
=
{
−
2
,
−
1
,
0
,
1
,
2
}
N=\lbrace-2,-1,0,1,2\rbrace
N={−2,−1,0,1,2},则
M
∩
N
=
M \cap N=
M∩N=
A.
(
0
,
1
)
(0,1)
(0,1)
B.
(
1
,
2
)
(1,2)
(1,2)
C.
(
0
,
1
,
2
)
(0,1,2)
(0,1,2)
D.
(
−
1
,
0
,
1
,
2
)
(-1,0,1,2)
(−1,0,1,2)
2、已知
z
=
1
+
2
i
2
−
i
z=\frac{1+2i}{2-i}
z=2−i1+2i(i 为虚数单位),则
∣
z
∣
=
\left|z\right|=
∣z∣=
A. 1
B.
2
\sqrt{2}
2
C. 2
D. 3
3、已知向量
α
=
(
−
1
,
1
)
\alpha=(-1,1)
α=(−1,1),
β
=
(
1
,
3
)
\beta=(1,3)
β=(1,3),若
α
⊥
(
a
+
λ
b
)
\alpha\perp(a+\lambda b)
α⊥(a+λb),则
λ
=
\lambda=
λ=
A. -2
B. -1
C. 1
D. 2
4、已知
sin
(
α
+
β
)
sin
(
α
−
β
)
=
3
\frac{\sin(\alpha+\beta)}{\sin(\alpha-\beta)}=3
sin(α−β)sin(α+β)=3,则
tan
α
tan
β
=
\frac{\tan\alpha}{\tan\beta}=
tanβtanα=
A. 1/3
B. 1/2
C. 2
D. 3
5、已知函数
f
(
x
)
f(x)
f(x) 的周期为2,且在 (0,1) 上单调递增,则
f
(
x
)
f(x)
f(x) 可以是
A.
f
(
x
)
=
s
i
n
π
x
f(x)=sin\pi x
f(x)=sinπx
B.
f
(
x
)
=
∣
sin
π
2
x
∣
f(x)=\left|\sin\frac{\pi}{2}x\right|
f(x)=
sin2πx
C.
f
(
x
)
=
cos
2
π
x
f(x)=\cos2\pi x
f(x)=cos2πx
D.
f
(
x
)
=
tan
π
x
f(x)=\tan\pi x
f(x)=tanπx
6、已知双曲线 E 的中心为原点,焦点在 x 轴上,两天渐近线夹角为
6
0
∘
60^{\circ}
60∘,且点(1,1)在 E 上,则 E 的离心率为
A.
2
\sqrt{2}
2
B.
2
3
3
\frac{2\sqrt{3}}{3}
323
C. 2
D.
2
3
3
\frac{2\sqrt{3}}{3}
323 或 2
7、已知曲线
y
=
e
x
−
1
y=e^{x-1}
y=ex−1 与曲线
y
=
a
ln
x
+
a
(
a
>
0
)
y=a\ln x+a(a\gt0)
y=alnx+a(a>0) 只有一个公共点,则
a
=
a=
a=
A.
1
e
\frac{1}{e}
e1
B.
1
1
1
C.
e
e
e
D.
e
2
e^{2}
e2
8、如图,已知圆台形水杯盛有水(不计厚度),杯口的半径为4,杯底的半径为3,高为6.5,当水杯水平放置时,水面的高度为水杯高度的一半,若放入一个半径为 r 的球(球被完全浸没),水恰好充满水杯,则
r
=
r=
r=
A. 1.5
B. 2
C. 3
D. 3.25
二、选择题(多)
本题共3小题,每小题6分,共18分。在每小题给出的选项中,有多项符合题目要求。全部选对的得6分,部分选对的得部分分,有选错的得0分。
9、一组样本数据
(
x
,
y
)
,
i
∈
{
1
,
2
,
3
,
⋯
,
100
}
(x,y),i \in \lbrace1,2,3,\cdots,100\rbrace
(x,y),i∈{1,2,3,⋯,100},其中
x
i
>
1895
x_i \gt 1895
xi>1895,
∑
i
=
1
1000
x
i
=
2
×
1
0
5
\displaystyle\sum_{i=1}^{1000}x_i=2\times10^{5}
i=1∑1000xi=2×105,
∑
i
=
1
100
y
i
=
970
\displaystyle\sum_{i=1}^{100}y_i=970
i=1∑100yi=970,求得其经验回归方程:
y
^
=
−
0.02
x
+
a
1
^
\hat{y}=-0.02x+\hat{a_1}
y^=−0.02x+a1^,残差为
e
i
^
\hat{e_i}
ei^,对样本数据进行处理:
x
i
′
=
ln
(
x
i
−
1895
)
x'_{i}=\ln(x_i-1895)
xi′=ln(xi−1895),得到新的数据
(
x
i
′
,
y
i
)
(x'_{i},y_i)
(xi′,yi),求得其经验回归方程为:
y
^
=
−
0.42
x
+
a
2
^
\hat{y}=-0.42x+\hat{a_2}
y^=−0.42x+a2^,其残差为
u
i
^
,
e
i
^
,
u
i
^
\hat{u_i},\hat{e_i},\hat{u_i}
ui^,ei^,ui^ 分布如图所示,且
e
^
~
N
(
0
,
σ
1
2
)
\hat{e}~N(0,\sigma_1^{2})
e^~N(0,σ12),
u
^
~
N
(
0
,
σ
2
2
)
\hat{u}~N(0,\sigma_2^{2})
u^~N(0,σ22),则
A. 样本
(
x
i
,
y
i
)
(x_i,y_i)
(xi,yi) 负相关
B.
a
i
^
=
49.7
\hat{a_i}=49.7
ai^=49.7
C.
σ
1
2
>
σ
2
2
\sigma_1^{2}\gt\sigma_2^{2}
σ12>σ22
D. 处理后得决定系数变大
10、已知函数
f
(
x
)
=
sin
x
+
sin
2
x
f(x)=\sin x+\sin2x
f(x)=sinx+sin2x,则
A.
f
(
x
)
f(x)
f(x) 为周期函数
B. 存在
t
∈
R
t\in R
t∈R,使得
y
=
f
(
x
)
y=f(x)
y=f(x) 的图像关于
x
=
t
x=t
x=t 对称
C.
f
(
x
)
f(x)
f(x) 在区间
(
π
3
,
3
π
4
)
(\frac{\pi}{3},\frac{3\pi}{4})
(3π,43π) 上单调递增
D.
f
(
x
)
f(x)
f(x)的最大值为2
11、已知
O
(
0
,
0
)
,
A
(
a
,
0
)
,
B
(
a
,
1
)
,
C
(
0
,
1
)
,
D
(
0
,
−
1
)
O(0,0),A(a,0),B(a,1),C(0,1),D(0,-1)
O(0,0),A(a,0),B(a,1),C(0,1),D(0,−1),其中
a
≠
0
a \ne 0
a=0,点 M、N 分别满足
A
M
→
=
λ
A
B
→
\overrightarrow{AM}=\lambda\overrightarrow{AB}
AM=λAB,
O
N
→
=
(
1
−
λ
)
A
B
→
\overrightarrow{ON}=(1-\lambda)\overrightarrow{AB}
ON=(1−λ)AB,其中
0
<
λ
<
1
0\lt\lambda\lt1
0<λ<1,直线CM与直线DN交于点P,则
A. 当
λ
=
1
2
\lambda=\frac{1}{2}
λ=21 时,直线CM与直线DN斜率乘积为
−
1
a
2
-\frac{1}{a^{2}}
−a21
B. 当
a
=
−
1
a=-1
a=−1 时,存在点 P,使得
{
D
P
}
=
2
\lbrace DP \rbrace=2
{DP}=2
C. 当
a
=
2
a=2
a=2 时,
△
P
A
C
\triangle PAC
△PAC 面积最大值为
2
−
1
2
\frac{\sqrt{2}-1}{2}
22−1
D. 若存在
λ
\lambda
λ,使得
∣
D
P
∣
>
2
\left| DP\right| \gt 2
∣DP∣>2,则
a
∈
(
−
∞
,
2
)
∪
(
2
,
+
∞
)
a \in (-\infty,\sqrt{2})\cup(\sqrt{2},+\infty)
a∈(−∞,2)∪(2,+∞)
三、填空题
本题共3小题,每小题5分,共15分。
12、 ( 2 x + 1 x 2 ) 6 (2x+\frac{1}{x^2})^{6} (2x+x21)6 展开式中常数项是___
13、在等比数列 { a n } \lbrace a_n \rbrace {an} 中,已知 a 1 a 3 = 9 , a 2 + a 4 = 9 a_1a_3=9,a_2+a_4=9 a1a3=9,a2+a4=9,则 a 4 = a_4= a4=___
14、某次考试公5道试题,均为判断题,计分的方法是:每道题答对的给2分,答错或不答的扣1分,每个人的基本分为10分。已知赵、钱、孙、李、周、吴6人的作答情况及前5个人的得分情况如下表,则吴的得分为___
四、解答题
本题共5小题,共77分。解答应写出文字说明、证明过程或演算步骤。
15、在
△
A
B
C
\triangle{ABC}
△ABC 中,角A、B、C所对的边分别为 a、b、c,
c
2
=
a
2
+
b
2
−
a
b
c^{2}=a^{2}+b^{2}-ab
c2=a2+b2−ab,
cos
2
B
=
sin
C
\cos2B=\sin C
cos2B=sinC。
(1)求 B;
(2)若 b=1,求
△
A
B
C
\triangle ABC
△ABC 的面积。
16、如图,在直三棱柱
A
B
C
−
A
1
B
1
C
1
ABC-A_1B_1C_1
ABC−A1B1C1 中,
A
B
=
A
C
=
2
3
AB=AC=2\sqrt{3}
AB=AC=23,
∠
B
A
C
=
12
0
∘
\angle BAC=120^{\circ}
∠BAC=120∘,
D
D
D 为
A
A
1
AA_1
AA1 得中点,
E
E
E 为
B
C
1
BC_1
BC1 的中点。
(1)证明:
D
E
⊥
平面
B
B
1
C
C
1
DE\perp平面BB_1CC_1
DE⊥平面BB1CC1;
(2)若
B
B
1
=
6
BB_1=6
BB1=6,求直线
A
1
B
A_1B
A1B 与
平面
D
B
C
1
平面DBC_1
平面DBC1 所成角的正弦值。
17、甲参加围棋比赛,采用三局两胜制,若每局比赛甲获胜的概率为
p
(
0
<
p
<
1
)
p(0\lt p\lt 1)
p(0<p<1),输的概率为
1
−
p
1-p
1−p,每局比赛的结果是独立的。
(1)当
p
=
2
3
p=\frac{2}{3}
p=32,求甲最终获胜的概率;
(2)为了增加比赛的趣味性,设值两种积分奖励方案,方案一:最终获胜者得3分,失败者得-2分;方案二:最终获胜者得1分,失败者得0分,请讨论那种方案,使得甲获得积分得数学期望更大。
18、已知抛物线
y
2
=
2
x
y^{2}=2x
y2=2x,过点
N
(
2
,
0
)
N(2,0)
N(2,0) 作两条直线
l
1
,
l
2
l_1,l_2
l1,l2 分别交于抛物线于 A、B 和 C、D(其中A、C在x轴上方)。
(1)当
l
1
l_1
l1 垂直于 x 轴,且四边形ABCD的面积为
4
5
4\sqrt{5}
45,求直线
l
2
l_2
l2 的方程;
(2)当
l
1
,
l
2
l_1,l_2
l1,l2 倾斜角互时,直线AC与直线BD交于点M,求
△
M
A
B
\triangle{MAB}
△MAB 的内切圆的圆心横坐标的取值范围。
19、已知无穷数列
a
n
a_{n}
an 满足,
a
1
,
a
2
a_1,a_2
a1,a2 为正整数,
a
n
=
∣
a
n
+
1
−
a
n
+
2
∣
,
n
∈
N
∗
a_n=\left|a_{n+1}-a_{n+2}\right|,n\in N^{\ast}
an=∣an+1−an+2∣,n∈N∗。
(1)若
a
1
=
1
,
a
3
=
2
a_1=1,a_3=2
a1=1,a3=2,求
a
4
a_4
a4;
(2)证明:“存在
k
∈
N
∗
k \in N^{\ast}
k∈N∗,使得
a
k
=
0
a_k=0
ak=0 ”是“
{
a
n
}
\lbrace a_n \rbrace
{an} 是周期为3的数列”的必要不充分条件;
(3)若
a
1
≠
a
2
a_1\ne a_2
a1=a2,是否存在数列
{
a
n
}
\lbrace a_n \rbrace
{an},使得
a
n
<
2025
a_n\lt2025
an<2025 恒成立?若存在,求出一组
a
1
,
a
2
a_1,a_2
a1,a2 的值;若不存在,请说明理由。
五、更新时间记录
- 选则题收录至第5题;「2025.2.21 21:40」
- 选择题收录至第11题;「2025.2.22 11:19」
- 填空题收录完毕;「2025.2.22 12:17」
- 解答题收录完毕。「2025.2.22 12:45」