2025年深圳市高三年级第一次调研考试(数学)


一、选择题(单)

本题共8小题,每小题5分,共40分。在每小题给出的四个选项中。只有一项是符合题目要求的。

1、集合 M = { x ∣ x < 2 } M=\lbrace x|\sqrt{x}\lt2\rbrace M={xx <2} N = { − 2 , − 1 , 0 , 1 , 2 } N=\lbrace-2,-1,0,1,2\rbrace N={2,1,0,1,2},则 M ∩ N = M \cap N= MN=
A. ( 0 , 1 ) (0,1) (0,1)
B. ( 1 , 2 ) (1,2) (1,2)
C. ( 0 , 1 , 2 ) (0,1,2) (0,1,2)
D. ( − 1 , 0 , 1 , 2 ) (-1,0,1,2) (1,0,1,2)

2、已知 z = 1 + 2 i 2 − i z=\frac{1+2i}{2-i} z=2i1+2i(i 为虚数单位),则 ∣ z ∣ = \left|z\right|= z=
A. 1
B. 2 \sqrt{2} 2
C. 2
D. 3

3、已知向量 α = ( − 1 , 1 ) \alpha=(-1,1) α=(1,1) β = ( 1 , 3 ) \beta=(1,3) β=(1,3),若 α ⊥ ( a + λ b ) \alpha\perp(a+\lambda b) α(a+λb),则 λ = \lambda= λ=
A. -2
B. -1
C. 1
D. 2

4、已知 sin ⁡ ( α + β ) sin ⁡ ( α − β ) = 3 \frac{\sin(\alpha+\beta)}{\sin(\alpha-\beta)}=3 sin(αβ)sin(α+β)=3,则 tan ⁡ α tan ⁡ β = \frac{\tan\alpha}{\tan\beta}= tanβtanα=
A. 1/3
B. 1/2
C. 2
D. 3

5、已知函数 f ( x ) f(x) f(x) 的周期为2,且在 (0,1) 上单调递增,则 f ( x ) f(x) f(x) 可以是
A. f ( x ) = s i n π x f(x)=sin\pi x f(x)=sinπx
B. f ( x ) = ∣ sin ⁡ π 2 x ∣ f(x)=\left|\sin\frac{\pi}{2}x\right| f(x)= sin2πx
C. f ( x ) = cos ⁡ 2 π x f(x)=\cos2\pi x f(x)=cos2πx
D. f ( x ) = tan ⁡ π x f(x)=\tan\pi x f(x)=tanπx

6、已知双曲线 E 的中心为原点,焦点在 x 轴上,两天渐近线夹角为 6 0 ∘ 60^{\circ} 60,且点(1,1)在 E 上,则 E 的离心率为
A. 2 \sqrt{2} 2
B. 2 3 3 \frac{2\sqrt{3}}{3} 323
C. 2
D. 2 3 3 \frac{2\sqrt{3}}{3} 323 或 2

7、已知曲线 y = e x − 1 y=e^{x-1} y=ex1 与曲线 y = a ln ⁡ x + a ( a > 0 ) y=a\ln x+a(a\gt0) y=alnx+a(a>0) 只有一个公共点,则 a = a= a=
A. 1 e \frac{1}{e} e1
B. 1 1 1
C. e e e
D. e 2 e^{2} e2

8、如图,已知圆台形水杯盛有水(不计厚度),杯口的半径为4,杯底的半径为3,高为6.5,当水杯水平放置时,水面的高度为水杯高度的一半,若放入一个半径为 r 的球(球被完全浸没),水恰好充满水杯,则 r = r= r=
水杯
A. 1.5
B. 2
C. 3
D. 3.25

二、选择题(多)

本题共3小题,每小题6分,共18分。在每小题给出的选项中,有多项符合题目要求。全部选对的得6分,部分选对的得部分分,有选错的得0分。

9、一组样本数据 ( x , y ) , i ∈ { 1 , 2 , 3 , ⋯   , 100 } (x,y),i \in \lbrace1,2,3,\cdots,100\rbrace (x,y),i{1,2,3,,100},其中 x i > 1895 x_i \gt 1895 xi>1895 ∑ i = 1 1000 x i = 2 × 1 0 5 \displaystyle\sum_{i=1}^{1000}x_i=2\times10^{5} i=11000xi=2×105 ∑ i = 1 100 y i = 970 \displaystyle\sum_{i=1}^{100}y_i=970 i=1100yi=970,求得其经验回归方程: y ^ = − 0.02 x + a 1 ^ \hat{y}=-0.02x+\hat{a_1} y^=0.02x+a1^,残差为 e i ^ \hat{e_i} ei^,对样本数据进行处理: x i ′ = ln ⁡ ( x i − 1895 ) x'_{i}=\ln(x_i-1895) xi=ln(xi1895),得到新的数据 ( x i ′ , y i ) (x'_{i},y_i) (xi,yi),求得其经验回归方程为: y ^ = − 0.42 x + a 2 ^ \hat{y}=-0.42x+\hat{a_2} y^=0.42x+a2^,其残差为 u i ^ , e i ^ , u i ^ \hat{u_i},\hat{e_i},\hat{u_i} ui^,ei^,ui^ 分布如图所示,且 e ^ ~ N ( 0 , σ 1 2 ) \hat{e}~N(0,\sigma_1^{2}) e^N(0,σ12) u ^ ~ N ( 0 , σ 2 2 ) \hat{u}~N(0,\sigma_2^{2}) u^N(0,σ22),则在这里插入图片描述
A. 样本 ( x i , y i ) (x_i,y_i) (xi,yi) 负相关
B. a i ^ = 49.7 \hat{a_i}=49.7 ai^=49.7
C. σ 1 2 > σ 2 2 \sigma_1^{2}\gt\sigma_2^{2} σ12>σ22
D. 处理后得决定系数变大

10、已知函数 f ( x ) = sin ⁡ x + sin ⁡ 2 x f(x)=\sin x+\sin2x f(x)=sinx+sin2x,则
A. f ( x ) f(x) f(x) 为周期函数
B. 存在 t ∈ R t\in R tR,使得 y = f ( x ) y=f(x) y=f(x) 的图像关于 x = t x=t x=t 对称
C. f ( x ) f(x) f(x) 在区间 ( π 3 , 3 π 4 ) (\frac{\pi}{3},\frac{3\pi}{4}) (3π,43π) 上单调递增
D. f ( x ) f(x) f(x)的最大值为2

11、已知 O ( 0 , 0 ) , A ( a , 0 ) , B ( a , 1 ) , C ( 0 , 1 ) , D ( 0 , − 1 ) O(0,0),A(a,0),B(a,1),C(0,1),D(0,-1) O(0,0),A(a,0),B(a,1),C(0,1),D(0,1),其中 a ≠ 0 a \ne 0 a=0,点 M、N 分别满足 A M → = λ A B → \overrightarrow{AM}=\lambda\overrightarrow{AB} AM =λAB O N → = ( 1 − λ ) A B → \overrightarrow{ON}=(1-\lambda)\overrightarrow{AB} ON =(1λ)AB ,其中 0 < λ < 1 0\lt\lambda\lt1 0<λ<1,直线CM与直线DN交于点P,则
A. 当 λ = 1 2 \lambda=\frac{1}{2} λ=21 时,直线CM与直线DN斜率乘积为 − 1 a 2 -\frac{1}{a^{2}} a21
B. 当 a = − 1 a=-1 a=1 时,存在点 P,使得 { D P } = 2 \lbrace DP \rbrace=2 {DP}=2
C. 当 a = 2 a=2 a=2 时, △ P A C \triangle PAC PAC 面积最大值为 2 − 1 2 \frac{\sqrt{2}-1}{2} 22 1
D. 若存在 λ \lambda λ,使得 ∣ D P ∣ > 2 \left| DP\right| \gt 2 DP>2,则 a ∈ ( − ∞ , 2 ) ∪ ( 2 , + ∞ ) a \in (-\infty,\sqrt{2})\cup(\sqrt{2},+\infty) a(,2 )(2 ,+)


三、填空题

本题共3小题,每小题5分,共15分。

12、 ( 2 x + 1 x 2 ) 6 (2x+\frac{1}{x^2})^{6} (2x+x21)6 展开式中常数项是___

13、在等比数列 { a n } \lbrace a_n \rbrace {an} 中,已知 a 1 a 3 = 9 , a 2 + a 4 = 9 a_1a_3=9,a_2+a_4=9 a1a3=9,a2+a4=9,则 a 4 = a_4= a4=___

14、某次考试公5道试题,均为判断题,计分的方法是:每道题答对的给2分,答错或不答的扣1分,每个人的基本分为10分。已知赵、钱、孙、李、周、吴6人的作答情况及前5个人的得分情况如下表,则吴的得分为___得分表


四、解答题

本题共5小题,共77分。解答应写出文字说明、证明过程或演算步骤。

15、在 △ A B C \triangle{ABC} ABC 中,角A、B、C所对的边分别为 a、b、c, c 2 = a 2 + b 2 − a b c^{2}=a^{2}+b^{2}-ab c2=a2+b2ab cos ⁡ 2 B = sin ⁡ C \cos2B=\sin C cos2B=sinC
(1)求 B;
(2)若 b=1,求 △ A B C \triangle ABC ABC 的面积。

16、如图,在直三棱柱 A B C − A 1 B 1 C 1 ABC-A_1B_1C_1 ABCA1B1C1 中, A B = A C = 2 3 AB=AC=2\sqrt{3} AB=AC=23 ∠ B A C = 12 0 ∘ \angle BAC=120^{\circ} BAC=120 D D D A A 1 AA_1 AA1 得中点, E E E B C 1 BC_1 BC1 的中点。
(1)证明: D E ⊥ 平面 B B 1 C C 1 DE\perp平面BB_1CC_1 DE平面BB1CC1
(2)若 B B 1 = 6 BB_1=6 BB1=6,求直线 A 1 B A_1B A1B 平面 D B C 1 平面DBC_1 平面DBC1 所成角的正弦值。直三棱柱

17、甲参加围棋比赛,采用三局两胜制,若每局比赛甲获胜的概率为 p ( 0 < p < 1 ) p(0\lt p\lt 1) p(0<p<1),输的概率为 1 − p 1-p 1p,每局比赛的结果是独立的。
(1)当 p = 2 3 p=\frac{2}{3} p=32,求甲最终获胜的概率;
(2)为了增加比赛的趣味性,设值两种积分奖励方案,方案一:最终获胜者得3分,失败者得-2分;方案二:最终获胜者得1分,失败者得0分,请讨论那种方案,使得甲获得积分得数学期望更大。

18、已知抛物线 y 2 = 2 x y^{2}=2x y2=2x,过点 N ( 2 , 0 ) N(2,0) N(2,0) 作两条直线 l 1 , l 2 l_1,l_2 l1,l2 分别交于抛物线于 A、B 和 C、D(其中A、C在x轴上方)。
(1)当 l 1 l_1 l1 垂直于 x 轴,且四边形ABCD的面积为 4 5 4\sqrt{5} 45 ,求直线 l 2 l_2 l2 的方程;
(2)当 l 1 , l 2 l_1,l_2 l1,l2 倾斜角互时,直线AC与直线BD交于点M,求 △ M A B \triangle{MAB} MAB 的内切圆的圆心横坐标的取值范围。

19、已知无穷数列 a n a_{n} an 满足, a 1 , a 2 a_1,a_2 a1,a2 为正整数, a n = ∣ a n + 1 − a n + 2 ∣ , n ∈ N ∗ a_n=\left|a_{n+1}-a_{n+2}\right|,n\in N^{\ast} an=an+1an+2,nN
(1)若 a 1 = 1 , a 3 = 2 a_1=1,a_3=2 a1=1,a3=2,求 a 4 a_4 a4
(2)证明:“存在 k ∈ N ∗ k \in N^{\ast} kN,使得 a k = 0 a_k=0 ak=0 ”是“ { a n } \lbrace a_n \rbrace {an} 是周期为3的数列”的必要不充分条件;
(3)若 a 1 ≠ a 2 a_1\ne a_2 a1=a2,是否存在数列 { a n } \lbrace a_n \rbrace {an},使得 a n < 2025 a_n\lt2025 an<2025 恒成立?若存在,求出一组 a 1 , a 2 a_1,a_2 a1,a2 的值;若不存在,请说明理由。


五、更新时间记录

  • 选则题收录至第5题;「2025.2.21 21:40」
  • 选择题收录至第11题;「2025.2.22 11:19」
  • 填空题收录完毕;「2025.2.22 12:17」
  • 解答题收录完毕。「2025.2.22 12:45」
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值