基于python的pulp库使用,从基础模型到复杂模型,从一维变量到二维变量

写在前面

学习笔记,仅作参考。
个人觉得配合步骤和建模,直接看代码就能入门pulp,所以没有啥解释,见谅。

参考

https://blog.csdn.net/youcans/article/details/116371416

步骤

1、安装PuLp (pip install pulp)

2、导入PuLp (from pulp import * )或者(import pulp as pl)

3、定义线性规划问题

PB = LpProblem ( problem name , sense )
"""
problem name=问题名称
sense=LpMinimize/LpMaximize
e.g.  MyProbLP = pulp.LpProblem("LPProbDemo1", sense=pulp.LpMaximize)
"""

4、定义决策变量

小tips

当约束条件需要变量大于某个数或小于某个数,用lowBound和upBound,不需要在约束条件中写!!!

DV = pulp.LPVariable ( decision variable name , lowbound , upbound ,category )
"""
DV=decision variable name:变量名,
lowBound和upBound:下界和上界, 默认分别是负无穷到正无穷,
参数 cat 用来设定变量类型,可选参数值:
     ‘Continuous’ 表示连续变量(默认值)、
     ’ Integer ’ 表示离散变量(用于整数规划问题)、
     ’ Binary ’ 表示0/1变量(用于0/1规划问题)  
"""

根据变量类型可以做不一样的变量定义

单个变量


                
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值