一文搞懂电容!

2.电容

1.品牌

国外:村田 muRata、松下 PANASONIC、三星 SAMSUNG、太诱 TAIYO YUDEN、TDK、威世 VISHAY、等等。

国内:国巨 YAGEO(中国台湾)、风华 FH、宇阳科技 EYANG、信昌电陶 PSA、三环 C

2.电容的主要作用

滤波、旁路、去耦、隔直(音频)、储能、自举

滤波&#x

### YOLOv8 的主要特性和使用教程 #### 一、YOLOv8的主要特性 YOLOv8 是目标检测领域的一个重要进展,具有多个显著特点: - **轻量级跨尺度特征融合(CCFM)**:通过引入 CCFM 模块实现了更有效的多尺度特征提取和融合,提升了模型性能的同时保持了较低的计算成本[^3]。 - **改进的数据增强方式**:采用更加多样化且高效的数据增广手段来提高泛化能力,在不同场景下均能取得良好效果[^4]。 - **优化后的骨干网络设计**:相较于前代版本,YOLOv8 对其基础架构进行了调整与优化,使得整体效率更高,速度更快[^1]。 - **支持多种任务类型**:除了常规的目标分类外,还能够处理实例分割等复杂视觉识别挑战。 #### 二、YOLOv8 使用教程 ##### 安装依赖库并准备环境 为了顺利地安装和运行 YOLOv8 ,建议先创建一个新的 Python 虚拟环境,并按照官方文档中的指导完成必要的软件包安装工作。通常情况下这会涉及到 PyTorch 及其他辅助工具链的选择与配置。 ```bash conda create -n yolov8 python=3.9 conda activate yolov8 pip install ultralytics ``` ##### 准备数据集 准备好用于训练或测试目的图像资料集合非常重要;这些素材应该被妥善整理成标准格式以便于后续操作。对于自定义项目而言,则需参照特定框架的要求来进行相应预处理步骤。 ##### 编写配置文件 编写合适的 `.yaml` 文件以指定各项超参数设定以及输入源信息等内容。此过程可能涉及但不限于设置锚框尺寸、类别数目以及其他影响最终输出质量的关键因素。 ```yaml train: ./datasets/train/images/ val: ./datasets/valid/images/ nc: 80 names: ['person', 'bicycle', ... ] ``` ##### 启动训练进程 当一切准备工作就绪之后就可以调用命令行接口执行实际的学习任务了。这里需要注意的是具体选项可能会依据个人需求有所差异,请务必仔细阅读相关说明材料后再做决定。 ```python from ultralytics import YOLO model = YOLO('yolov8.yaml') results = model.train(data='coco128.yaml', epochs=100, imgsz=640) ``` ##### 进行预测评估 最后一步则是利用已经训练好的权重文件对未知样本实施推断作业,并据此作出合理的判断结论。同样可以通过简单的 API 接口轻松达成这一目标。 ```python predictions = model.predict(source="https://ultralytics.com/images/bus.jpg", conf=0.5) print(predictions) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

若忘即安

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值