链接预测是用来预测三元组(h,r,t)中缺失实体h,t或r的任务,对于每一个缺失的实体,模型将被要求用所有的知识图谱中的实体作为候选项进行计算,并进行排名,而不是单纯给出一个最优的预测结果。
在测试阶段,对于每个待测试三元组,用知识图谱中的除去h与t之外的其他实体作为候选项来替换头实体或尾实体,并且按大小顺序给出这些实体的评分函数。
使用了两种评测方法。
正确的实体评分函数的平均排名(mean rank),
正确的实体排名在前10的比例,即十命中率(hit@10)
1.先说Mean rank 原文链接:https://blog.csdn.net/coolerzz/article/details/81704756
首先 对于每个 testing triple,以预测tail entity为例,我们将(h,r,t)中的t用知识图谱中的每个实体来代替,然后通过fr(h,t)函数来计算分数,这样我们可以得到一系列的分数,之后按照 升序将这些分数排列。
然后,我们需要知道的是f函数值是越小越好,那么在上个排列中,排的越前越好。
现在重点来了,我们去看每个 testing triple中正确答案也就是真实的t到底能在上述序列中排多少位,比如说t1排100,t2排200,t