如题。只是自己使用,能帮到大家最好,看不懂也不要cue,本来也是打算自己看的~
- Its performance surpasses the previous state-of-the-art by a large (significant) margin of +2.7 box AP and +2.6 mask AP on COCO, and +3.2 mIoU on ADE20K, demonstrating the potential of Transformer-based models as vision backbones.
- gnConv can serve as a plug-and-play module to improve various vision Transformers and convolution-based models.
- HorNet also shows favorable scalability to more training data and a larger model size.
- Apart from the effectiveness in visual encoders, we also show gnConv can be applied to task-specific decoders and consistently improve dense prediction performance with less computation. Our results demonstrate that gnConv can be a new basic module for visual modeling that effectively combines the merits of both vision Transformers and CNNs.
- The emergence of Transformer-based architectures [16, 52, 42] greatly challenges the dominance of CNNs. By combining some successful designs in CNN architectures and the new self-attention mechanism, vision Transformers have shown leading performance on various vision tasks such as …
- Some efforts have been made to improve the CNN architectures by learning from the new designs in vision Transformers.
- While previous work has successfully migrated …, a higher-order spatial interaction mechanism has not been studied. We show that …
- Transformers lack some of the inductive biases inherent to CNNs, such as translation equivariance and locality, and therefore do not generalize well when trained on insufficient amounts of data.
- However, ViT achieves inferior performance to CNNs when trained from scratch on a midsize dataset like ImageNet. We find it is because: 1) the simple tokenization of input images fails to model the important local structure such as edges and lines among neighboring pixels, leading to low training sample efficiency; 2) the redundant attention backbone design of ViT leads to limited feature richness for fixed computation budgets and limited training samples.
- In Section 2, we review important basic notions of xxx, including notational conventions that will ease the subsequent analytic exposition.
- Our position is that none of the distance measures can be said to be superior to the others in the absolute and that the choice of such a measure should always be guided by practical considerations relative to a specific application.
- The new measures have a number of elegant properties and some properties are proved, to improve the employability of these measures.
- To portray the risk and uncertainty arises in MCDM problems, the TODIM and VIKOR methods have been studied in Table 1 under various uncertain environments.
- The superfluity of this communication is arranged as follows. Section xxx… Section xxx…
- Keeping this motivation in mind, we propose…
- Analogous to xxx… (类似于)
- Though divergence regularization has been proposed to settle this problem, it cannot be trivially applied to cooperative multi-agent reinforcement learning (MARL).
- Even though xxx, xxx is imperfect.
- xxx, on the other hand, could xxxx…
- Conservative policy iteration and its successive methods …
- Theoretical results corroborated by simulations show that the derived KLD is very accurate and can perfectly characterize both subsystems, namely the communication and radar subsystems.
- Artificial intelligence (AI) algorithms continue to rival human performance on a variety of clinical tasks, while their actual impact on human diagnosticians, when incorporated into clinical workflows, remains relatively unexplored.
- Using evidence theory makes us able to handle ambiguity and imperfect knowledge regarding the label sets of training patterns.
- Experiments on benchmark datasets show the efficiency of the proposed approach as compared to other existing methods.
- The Dempster-Shafer (D-S) theory [10] is a formal framework for representing and reasoning with uncertain and imprecise information.
- 耦合:coupling
- disaggregated measure of information
- PointHop is mathematically transparent.