flink任务内存调优,TaskManager、JobManager内存配置

本文介绍了Flink任务的内存配置,包括总内存、TaskManager和JobManager的内存模型。TaskManager内存模型复杂,涉及直接内存和本地内存,而JobManager作为控制单元,其内存配置对集群稳定性至关重要。文章提供了相关配置参数的说明,帮助用户优化Flink集群的内存使用。
摘要由CSDN通过智能技术生成

        Flink是基于java的JVM运行,拥有高效的数据处理能力,但是考虑到用户在 Flink 上运行的应用的多样性,尽管flink框架已经为所有配置项提供合理的默认值,仍无法满足所有情况下的需求。 为了给用户生产提供最大化的价值, Flink 允许用户在整体上以及细粒度上对集群的内存分配进行调整。(本文介绍的内存配置方法适用于 1.11 及以上版本)

一、flink任务的总内存

 

        Flink JVM 进程的 进程总内存(Total Process Memory)包含了: Flink 任务和框架本身使用的内存(Total Flink Memory)和运行 Flink 的 JVM 本身使用的内存。 

        Flink 总内存(Total Flink Memory)包括 JVM 堆内存(Heap Memory)和堆外内存(Off-Heap Memory)。 其中堆外内存包括直接内存(Direct Memory)和本地内存(Native Memory)。

配置 Flink 进程内存最简单的方法是指定以下两个配置项中的任意一个:

  配置项  TaskManager 配置参数    JobManager 配置参数  
Total Flink Memory taskmanager.memory.flink.size jobmanager.memory.flink.size
Total Process Memory taskmanager.memory.process.size jobmanager.memory.process.size
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大数据动物园

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值