Flink SQL任务TaskManager内存设置

         在提交flink任务时,通过 taskmanager.memory.process.size 配置 taskmanager的总运行内存,其内的细节内存根据默认比例划分有时候也会存在不合理。如下所示:

        配置了10G的taskmanager运行总内存,默认给Managed Memory分配了3.5G的内存,实际任务运行这部分根本不需要这么多内存。如何对内存进行最大化管理和配置就十分重要了。

        本文主要介绍FlinkSQL的任务 TaskManager内存调优,其他flink任务也可以作为参考。

1、启动flink sql客户端

sql-client.sh embedded shell

 可以先在flink客户端执行以下命令进行flinksql任务配置。

#设置flink任务本身任务名
SET pipeline.name = 'flink-sql-test';

#设置flink on yarn的任务名
SET yarn.application.name= 'flink-sql-test';

#设置flink checkpoint的文件保存地址
SET state.checkpoints.dir = 'hdfs:///flink/checkpoints/flink-sql-test';

#设置taskmanager的运行总内存为5G
SET taskmanager.memory.process.size = '5120m';

#设置flink框架内存
SET taskmanager.memory.framework.heap.size = '128m';

#设置用户代码运行内存
SET taskmanager.memory.task.heap.size = '4096m';

#设置managed memory内存
SET taskmanager.memory.managed.size = '128m';

#设置堆外内存
SET taskmanager.memory.framework.off-heap.size = '128m';

#设置网络缓存
SET taskmanager.memory.network.max = '128m';

#设置JVM内存
SET taskmanager.memory.jvm-metaspace.size = '256m';
SET taskmanager.memory.jvm-overhead.max = '256m';

#设置jobmanager总内存
SET jobmanager.memory.process.size= '1024m';

#设置flink on yarn的yarn队列
SET yarn.application.queue= 'other';

经过调试后提交的flink taskmanager运行时内存如下:

         可以看到原来配置的10G taskmanager内存,现在只需要5G就能跑起来了,内存优化了一半,有效的利用了集群的资源。

        有关flink的内存调优配置,需要的同学也可以参考这篇文章进行更加细节的内存配置flink任务内存调优,TaskManager、JobManager内存配置_大数据摸鱼的博客-CSDN博客

Flink SQL中,可以通过设置任务的并行度来实现任务的并行执行。Flink SQL中的并行度可以分为两种: 1. Task并行度:指的是Flink任务中运算子的并行度,也就是同一个算子能够同时处理多个输入数据流的能力。 2. Slot并行度:指的是在Flink集群中,每个TaskManager可以运行的Task的数量。Slot并行度取决于每个TaskManager节点的资源情况。 Flink SQL中的并行度可以通过以下方式进行设置: 1. 在创建TableEnvironment的时候设置默认的并行度: ```java StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setParallelism(3); StreamTableEnvironment tEnv = StreamTableEnvironment.create(env); ``` 2. 在创建Table的时候设置并行度: ```sql CREATE TABLE myTable ( a INT, b STRING ) WITH ( 'connector.type' = 'kafka', 'connector.version' = 'universal', 'connector.topic' = 'myTopic', 'connector.startup-mode' = 'earliest-offset', 'connector.properties.zookeeper.connect' = 'localhost:2181', 'connector.properties.bootstrap.servers' = 'localhost:9092', 'format.type' = 'json', 'update-mode' = 'append', 'parallelism' = '4' ); ``` 在上面的代码中,'parallelism' = '4' 表示设置了该Table的并行度为4。 设置并行度的原则是根据数据量和资源情况来确定。如果数据量较大,可以适当增加并行度以提高处理效率;如果资源有限,则需要适当降低并行度以避免资源的浪费。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大数据动物园

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值