OCR效果统计公式

一:OCR字测试指标

1:字段说明

H:识别正确的字符个数;H=N-D-S
D:漏识别的字符个数;删除错误
S:识别错误的字符个数;替换错误
I:多识别错误的字符个数;插入错误
N:人工标注的字符总数

2:字的效果统计

①字的准确率corr(correction):在所有标注字符中,识别正确的字符占比:
corr=H/N
②字的精确率acc:acc=(H-I)/N

3:要素效果统计(整句话)

corrH:表示完全识别正确的要素数量;
labN:表示标注的要素总数;
extractN:表示引擎抽取要素总数;
①要素抽取准确率:pression=corrH/extractN
②要素抽取召回率:recall=corrH/labN
③F1=(2* pression*recall)/(pression+recall)

### OCR阅卷项目实现方案 OCR(光学字符识别)技术在教育行业的应用主要体现在自动批改试卷、成绩统计等方面。以下是关于OCR阅卷项目的具体实现方案和技术选型。 #### 1. 数据采集与预处理 数据采集阶段涉及扫描纸质试卷或将图片上传至系统。为了提后续OCR识别的准确性,需对图像进行一系列预处理操作,包括去噪、二值化、倾斜校正等[^1]。这些步骤能够显著提升文字区域检测的效果。 ```python import cv2 def preprocess_image(image_path): img = cv2.imread(image_path, 0) # 灰度读取 _, binary_img = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY) # 二值化 deskewed_img = cv2.warpPerspective(binary_img, M, (w, h)) # 倾斜矫正 return deskewed_img ``` #### 2. 文字提取与结构分析 通过先进的深度学习模型如CRNN(Convolutional Recurrent Neural Network),可以效完成手写体和印刷字体的文字提取工作。此过程不仅关注单个字符的精准定位,还注重整体布局的理解以便于区分题目编号、学生答案以及评分标准等内容[^2]。 #### 3. 自动评分逻辑设计 基于自然语言处理(NLP),构建针对不同学科特点的答案匹配算法是非常必要的。例如,在数学领域可能需要解析复杂的公式表达;而在语文阅读理解方面,则更侧重语义相似度计算来判定得分情况。 #### 4. 后端服务架构搭建 考虑到大规模并发请求下的性能需求,推荐采用微服务架构模式部署整个平台。利用Docker容器化技术和Kubernetes编排工具简化运维流程的同时也增强了系统的可扩展性和稳定性。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

空弹壳

你的鼓励是我创作的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值