基于神经网络的实时文本检测(自用 代码+注释)

环境:Pycharm + python3.7 + opencv

目录

1. 准备工作:

1.1 添加相关库

2. 主要代码

2.1 导入相关库

2.2 导入数据图片及其标签,并检测是否导入成功

2.3 将数据及标签转换成numpy数组

2.4 拆分数据集(训练集,测试集,验证集)

2.5 绘制柱状图

2.6 对图片进行预处理

2.7 定义模型

2.8 训练模型

2.8 保存模型文件以便下次使用

2.9 应用模型

 3 总结


1. 准备工作:

1.1 添加相关库

numpy

sklearn

keras 2.3.1

opencv-python

matplotlib 3.5.1

tensorflow 2.0.0

2. 主要代码

2.1 导入相关库

import numpy as np
import cv2
import os
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
from keras.preprocessing.image import ImageDataGenerator
from keras.utils.np_utils import to_categorical
from keras.models import Sequential
from keras.layers.convolutional import Conv2D,MaxPooling2D
from keras.layers import Dropout,Flatten,Dense
from keras.optimizers import Adam

import pickle

2.2 导入数据图片及其标签,并检测是否导入成功

##################################
path = 'myData'

##################################
images = []      # 存放图片
classNo = []    # classNumber:存放类别号(图片标签)
myList = os.listdir(path)
print("Total No of Classes Detected", len(myList))        # 查看文件夹总数(类别总数:有10类)
noOfClass = len(myList)   # numberOfClass:类别总数
print("Importing Classes ......")

for x in range(0, noOfClass):                   # 遍历每个类别的文件夹
    myPicList = os.listdir(path+"/"+str(x))     # 于 当前类别的文件夹 的列表
    for y in myPicList:             # 遍历 当前类别文件夹 中的img
        curImg = cv2.imread(path+"/"+str(x)+"/"+str(y))
        curImg = cv2.resize(curImg, (32, 32))
        images.append(curImg)    # 存入当前图片
        classNo.append(x)       # 存入当前图片的标签
    print(x, end=" ")        # 打印出当前类别
print("\n")
print(len(images))   # 检查共导入了多少张image
print(len(classNo))   # 检查共导入了多少个image标签

输出:

2.3 将数据及标签转换成numpy数组

images = np.array(images)
classNo = np.array(classNo)

print(images.shape)     # 由此可看出image经转换后是 32*32且3通道
print(classNo.shape)

2.4 拆分数据集(训练集,测试集,验证集)

# 将数据分割成训练集和测试集(将20%的数据用作测试集)
X_train,X_test,Y_train,Y_test = train_test_split(images, classNo,
                                                 test_size= testRatio)
print(X_train.shape)    # 打印拆分后训练集的shape
print(X_test.shape)     # 打印拆分后测试集的shape

# 将数据分割成训练集和测试集(将20%的数据用作测试集)
X_train,X_test,Y_train,Y_test = train_test_split(images, classNo,
                                                 test_size= testRatio)
# 将分割后的测试数据进一步分割出20%用作验证集
X_train,X_validation,Y_train,Y_validation = train_test_split(X_train, Y_train,
                                                 test_size= valRatio)
print(X_train.shape)         # 打印拆分后训练集的shape
print(X_test.shape)          # 打印拆分后测试集的shape
print(X_validation.shape)    # 打印拆分后验证集的shape

如图:

第一行:原来数据集的shape

第二行:拆分后训练集的shape

第三行:拆分后测试集的shape

第四行:拆分后验证集的shape

2.5 绘制柱状图

绘制各标签所拥有图数的柱状图

# print(np.where(Y_train==0))          # 返回类别为0的数据 的所有索引
# print(len(np.where(Y_train==0)[0]))  # 返回类别为0的数据 的索引总数总长度(多少个)
numOfSamples = []    # 存放类别索引总长(样本总数)
for x in range(0, noOfClass):
    # print(len(np.where(Y_train == x)[0]))  # 返回当前类别数据 的索引总数总长度(多少个)
    numOfSamples.append(len(np.where(Y_train == x)[0]))  # 添加当前类别的样本数
print(numOfSamples)

plt.figure(figsize=(10, 5))                    # 生成图框
plt.bar(range(0,noOfClass), numOfSamples)      # 绘制柱状图(画条条)
plt.title("No of Image for each Class (各标签的图数)")
plt.xlabel("Class ID (标签)")
plt.ylabel("Number of Image (图数)")
plt.show()

2.6 对图片进行预处理

########### 对图片进行 预处理 ##################################
def preProcessing(img):
    img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    img = cv2.equalizeHist(img)    # 直方图均衡化处理(图像增强,提升图像质量)
    img = img/255                  # 将值控制在0到1之间
    return img

img = preProcessing(X_train[25])
img = cv2.resize(img,(300,300))
cv2.imshow("PreProcessing", img)
cv2.waitKey(0)

2.6.1 将数据依次进行预处理: 

print(X_train[25].shape)
# 将训练集的图依次进行预处理
X_train = np.array(list(map(preProcessing, X_train)))
img = X_train[25]
img = cv2.resize(img,(300,300))
cv2.imshow("PreProcessing", img)
cv2.waitKey(0)
print(X_train[25].shape)

 

X_train = np.array(list(map(preProcessing, X_train)))            # 将训练集的图依次进行预处理
X_test = np.array(list(map(preProcessing, X_test)))              # 将测试集的图依次进行预处理
X_validation = np.array(list(map(preProcessing, X_validation)))  # 将验证集的图依次进行预处理

2.6.2 重塑数据,给其增加一个深度: 

print(X_train.shape)    # 重塑前的shape
# 重塑数据,给其增加一个深度
X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], X_train.shape[2], 1)
print(X_train.shape)    # 重塑后的shape

# 重塑数据,给其增加一个深度
X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], X_train.shape[2], 1)
X_test = X_test.reshape(X_test.shape[0], X_test.shape[1], X_test.shape[2], 1)
X_validation = X_validation.reshape(X_validation.shape[0], X_validation.shape[1], X_validation.shape[2], 1)

 2.6.3 为定义模型做准备(图像生成器)

# 图像生成器:对每批次的训练图片适时进行数据增强(可增强模型的泛化能力)
dataGen = ImageDataGenerator(width_shift_range=0.1,     # 随机水平位移
                             height_shift_range=0.1,    # 随机垂直位移
                             zoom_range=0.2,            # 随机缩放
                             shear_range=0.1,           # 随机剪裁
                             rotation_range=10)         # 随机旋转角度
dataGen.fit(X_train)    # 使用实时数据增益的批数据 对模型进行拟合

# 将标签向量转换为0 1的矩阵类型表示
Y_train = to_categorical(Y_train, noOfClass)
Y_test = to_categorical(Y_test, noOfClass)
Y_validation = to_categorical(Y_validation, noOfClass)

2.7 定义模型

def myModel():
    # 基于LetNet模型
    noOfFilters = 60        # number Of Filters:过滤器数量
    sizeOfFilter1 = (5,5)   # 过滤器1(较大那个)
    sizeOfFilter2 = (3,3)   # 过滤器2(较小那个)
    sizeOfPool = (2,2)      # 池化窗口
    noOfNode = 500          # 节点数

    model = Sequential()
    model.add((Conv2D(noOfFilters, sizeOfFilter1,
                      input_shape=(imageDimensions[0],
                                   imageDimensions[1], 1),
                      activation='relu')))
    model.add((Conv2D(noOfFilters, sizeOfFilter1, activation='relu')))
    model.add(MaxPooling2D(pool_size=sizeOfPool))
    model.add((Conv2D(noOfFilters//2, sizeOfFilter2, activation='relu'))) # 过滤器减半
    model.add((Conv2D(noOfFilters//2, sizeOfFilter2, activation='relu')))
    model.add(MaxPooling2D(pool_size=sizeOfPool))
    model.add(Dropout(0.5))     # 随机失活

    model.add(Flatten())        # 将得到的特征映射“压平”
    model.add(Dense(noOfNode, activation='relu'))   # 全连接层
    model.add(Dropout(0.5))
    model.add(Dense(noOfClass, activation='softmax'))
    # 为模型设置优化器optimizer,损失函数loss,准确性评价函数metrics
    model.compile(Adam(lr=0.001), loss='categorical_crossentropy',
                  metrics=['accuracy'])         # lr=0.001为学习率
    return model

model = myModel()
print(model.summary())  #打印模型的网络结构

2.8 训练模型

2.8.1 将数据送入模型进行训练

########### 将数据送入模型进行训练 ##################################
batchSizeVal = 50           # 批量大小,即每批用50个样本(每经过50个样本更新一次权重)
epochsVal = 10              # 迭代10次
stepsPerEpochVal = 2000     # 每轮的步数,即每次迭代执行的批次
# steps_per_epoch:为训练数据总数/批量大小

# fit_generator():
# 接受批量数据,执行反向传播,并更新模型中的权重。
# 重复该过程直到迭代结束
# dataGen.flow():
# 对输入数据(图像,标签)打乱后,依次取batch_size的图片并逐一进行变换。取完后再循环
history = model.fit_generator(dataGen.flow(X_train,Y_train,
                                           batch_size=batchSizeVal),
                              steps_per_epoch=stepsPerEpochVal,
                              epochs=epochsVal,
                              validation_data=(X_validation,Y_validation),
                              shuffle=1)    # 打乱(洗牌)

 2.8.2 可视化loss和准确率精度的变化:

# 可视化loss的变化
plt.figure(1)
plt.plot(history.history['loss'])       # 画图
plt.plot(history.history['val_loss'])
plt.legend(['training','validation'])   # 绘制图例
plt.title('Loss')
plt.xlabel('epoch')
# 可视化准确率精度的变化
plt.figure(2)
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.legend(['training','validation'])   # 绘制图例
plt.title('Accuracy')
plt.xlabel('epoch')
plt.show()

 

2.8.3 对模型进行评估并查看测试分数和精度: 

# 对模型进行评估
score = model.evaluate(X_test, Y_test, verbose=0)   # verbose=0不在标准输出流 输出日志信息
print('Test Score = ', score[0])        # 打印测试的分数
print('Test Accuracy = ', score[1])     # 打印测试的准确率

如图:测试的准确率达99.85% 

2.8 保存模型文件以便下次使用

########### 保存模型文件以便下次使用 ##################################
pickle_out = open("model_trained.p", "wb")
pickle.dump(model, pickle_out)    # 序列化对象,将对象model保存到文件pickle_out中
pickle_out.close()

2.9 应用模型

加载模型,调用摄像头并进行预处理

##################################
width = 640
height = 480
##################################

cap = cv2.VideoCapture(0)
# 把宽高改成 640*480
cap.set(3, width)
cap.set(4,height)

pickle_in = open("model_trained.p", "rb")
model = pickle.load(pickle_in)      # 加载数据

########### 对图片预处理 ##################################
def preProcessing(img):
    img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    img = cv2.equalizeHist(img)    # 直方图均衡化处理(图像增强,提升图像质量)
    img = img/255                  # 将值控制在0到1之间
    return img

while True:
    success, imgOriginal = cap.read()
    img = np.asarray(imgOriginal)
    img = cv2.resize(img, (320,320))
    img = preProcessing(img)
    cv2.imshow("Processed Image", img)

    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

 

2.10 使用模型进行预测

    # Predict 预测
    classIndex = int(model.predict_classes(img))    # 返回预测出的类别的 索引
    # print(classIndex)                               # 打印预测出的标签索引
    predictions = model.predict(img)                # 用模型来实时预测图像的标签
    print(predictions)                              # 打印预测出的 标签概率值列表
    probVal = np.amax(predictions)                  # 找出概率数组predictions中的最大可能性

预测出的 标签概率值列表 :

    # Predict 预测
    classIndex = int(model.predict_classes(img))    # 返回预测出的类别的 索引
    # print(classIndex)                               # 打印预测出的标签索引
    predictions = model.predict(img)                # 用模型来实时预测图像的标签
    # print(predictions)                              # 打印预测出的 标签概率值列表
    probVal = np.amax(predictions)                  # 找出概率数组predictions中的最大可能性
    print(probVal)                                  # 打印预测出的 最大概率值

预测出的 最大概率值: 

 

 预测出的标签及其概率值:

    print(classIndex, probVal)                                  # 打印预测出的标签及其概率值

 若概率值>0.7,则再摄像头获取的视频窗口左上角绘制预测出的标签及其概率值:

    # 若概率值>0.7,则再摄像头获取的视频窗口左上角绘制预测出的标签及其概率值
    if probVal > threshold:
        cv2.putText(imgOriginal, str(classIndex)+"  "+str(probVal),
                    (50,50), cv2.FONT_HERSHEY_COMPLEX, 1, (0,0,255), 1)
    cv2.imshow("Original Image", imgOriginal)

 

 3 总结

OCR_CNN_Training.py

import numpy as np
import cv2
import os
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
from keras.preprocessing.image import ImageDataGenerator
from keras.utils.np_utils import to_categorical
from keras.models import Sequential
from keras.layers.convolutional import Conv2D,MaxPooling2D
from keras.layers import Dropout,Flatten,Dense
from keras.optimizers import Adam

import pickle
##################################
path = 'myData'
testRatio = 0.2     # 测试集比率
valRatio = 0.2      # 验证集比率
imageDimensions = (32,32,3)    # 图像维度

batchSizeVal = 50           # 批量大小,即每批用50个样本(每经过50个样本更新一次权重)
epochsVal = 10              # 迭代10次
stepsPerEpochVal = 2000     # 每轮的步数为2000,即每次迭代执行的批次
# steps_per_epoch:为训练数据总数/批量大小

##################################
images = []      # 存放图片
classNo = []     # classNumber:存放类别号(图片标签)
myList = os.listdir(path)
print("Total No of Classes Detected", len(myList))        # 查看文件夹总数(类别总数:有10类)
noOfClass = len(myList)   # numberOfClass:类别总数
print("Importing Classes ......")

for x in range(0, noOfClass):                   # 遍历每个类别的文件夹
    myPicList = os.listdir(path+"/"+str(x))     # 于 当前类别的文件夹 的列表
    for y in myPicList:          # 遍历 当前类别文件夹 中的img
        curImg = cv2.imread(path+"/"+str(x)+"/"+str(y))
        curImg = cv2.resize(curImg, (imageDimensions[0], imageDimensions[1]))
        images.append(curImg)    # 存入当前图片
        classNo.append(x)        # 存入当前图片的标签
    print(x, end=" ")        # 打印出当前类别
print(" ")
# print("\n")
# print(len(images))    # 检查共导入了多少张image
# print(len(classNo))   # 检查共导入了多少个image标签

images = np.array(images)
classNo = np.array(classNo)

print(images.shape)     # 由此可看出image经转换后是 32*32且3通道
# print(classNo.shape)


########### Spliting the Data 拆分数据集(训练集,测试集,验证集) ############

# 将数据分割成训练集和测试集(将20%的数据用作测试集)
X_train,X_test,Y_train,Y_test = train_test_split(images, classNo,
                                                 test_size= testRatio)
# 将分割后的测试数据进一步分割出20%用作验证集
X_train,X_validation,Y_train,Y_validation = train_test_split(X_train, Y_train,
                                                 test_size= valRatio)
print(X_train.shape)         # 打印拆分后训练集的shape
print(X_test.shape)          # 打印拆分后测试集的shape
print(X_validation.shape)    # 打印拆分后验证集的shape

# print(np.where(Y_train==0))          # 返回类别为0的数据 的所有索引
# print(len(np.where(Y_train==0)[0]))  # 返回类别为0的数据 的索引总数总长度(多少个)
numOfSamples = []    # 存放类别索引总长(样本总数)
for x in range(0, noOfClass):
    # print(len(np.where(Y_train == x)[0]))  # 返回当前类别数据 的索引总数总长度(多少个)
    numOfSamples.append(len(np.where(Y_train == x)[0]))  # 添加当前类别的样本数
print(numOfSamples)

plt.figure(figsize=(10, 5))                    # 生成图框
plt.bar(range(0,noOfClass), numOfSamples)      # 绘制柱状图(画条条)
plt.title("No of Image for each Class (各标签的图数)")
plt.xlabel("Class ID (标签)")
plt.ylabel("Number of Image (图数)")
plt.show()

########### 对图片进行 预处理 ##################################
def preProcessing(img):
    img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    img = cv2.equalizeHist(img)    # 直方图均衡化处理(图像增强,提升图像质量)
    img = img/255                  # 将值控制在0到1之间
    return img

# img = preProcessing(X_train[25])
# img = cv2.resize(img,(300,300))
# cv2.imshow("PreProcessing", img)
# cv2.waitKey(0)

# print(X_train[25].shape)
X_train = np.array(list(map(preProcessing, X_train)))            # 将训练集的图依次进行预处理
X_test = np.array(list(map(preProcessing, X_test)))              # 将测试集的图依次进行预处理
X_validation = np.array(list(map(preProcessing, X_validation)))  # 将验证集的图依次进行预处理
# img = X_train[25]
# img = cv2.resize(img,(300,300))
# cv2.imshow("PreProcessing", img)
# cv2.waitKey(0)
# print(X_train[25].shape)

# print(X_train.shape)    # 重塑前的shape
# 重塑数据,给其增加一个深度
X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], X_train.shape[2], 1)
X_test = X_test.reshape(X_test.shape[0], X_test.shape[1], X_test.shape[2], 1)
X_validation = X_validation.reshape(X_validation.shape[0], X_validation.shape[1], X_validation.shape[2], 1)
# print(X_train.shape)    # 重塑后的shape


# 图像生成器:对每批次的训练图片适时进行数据增强(可增强模型的泛化能力)
dataGen = ImageDataGenerator(width_shift_range=0.1,     # 随机水平位移
                             height_shift_range=0.1,    # 随机垂直位移
                             zoom_range=0.2,            # 随机缩放
                             shear_range=0.1,           # 随机剪裁
                             rotation_range=10)         # 随机旋转角度
dataGen.fit(X_train)    # 使用实时数据增益的批数据 对模型进行拟合

# 将标签向量转换为0 1的矩阵类型表示
Y_train = to_categorical(Y_train, noOfClass)
Y_test = to_categorical(Y_test, noOfClass)
Y_validation = to_categorical(Y_validation, noOfClass)

def myModel():
    # 基于LetNet模型
    noOfFilters = 60        # number Of Filters:过滤器数量
    sizeOfFilter1 = (5,5)   # 过滤器1(较大那个)
    sizeOfFilter2 = (3,3)   # 过滤器2(较小那个)
    sizeOfPool = (2,2)      # 池化窗口
    noOfNode = 500          # 节点数

    model = Sequential()
    model.add((Conv2D(noOfFilters, sizeOfFilter1,
                      input_shape=(imageDimensions[0],
                                   imageDimensions[1], 1),
                      activation='relu')))
    model.add((Conv2D(noOfFilters, sizeOfFilter1, activation='relu')))
    model.add(MaxPooling2D(pool_size=sizeOfPool))
    model.add((Conv2D(noOfFilters//2, sizeOfFilter2, activation='relu'))) # 过滤器减半
    model.add((Conv2D(noOfFilters//2, sizeOfFilter2, activation='relu')))
    model.add(MaxPooling2D(pool_size=sizeOfPool))
    model.add(Dropout(0.5))     # 随机失活

    model.add(Flatten())        # 将得到的特征映射“压平”
    model.add(Dense(noOfNode, activation='relu'))   # 全连接层
    model.add(Dropout(0.5))
    model.add(Dense(noOfClass, activation='softmax'))
    # 为模型设置优化器optimizer,损失函数loss,准确性评价函数metrics
    model.compile(Adam(lr=0.001), loss='categorical_crossentropy',
                  metrics=['accuracy'])         # lr=0.001为学习率
    return model

model = myModel()
print(model.summary())  #打印模型的网络结构


########### 将数据送入模型进行训练 ##################################

# fit_generator():
# 接受批量数据,执行反向传播,并更新模型中的权重。
# 重复该过程直到迭代结束
# dataGen.flow():
# 对输入数据(图像,标签)打乱后,依次取batch_size的图片并逐一进行变换。取完后再循环
history = model.fit_generator(dataGen.flow(X_train,Y_train,
                                           batch_size=batchSizeVal),
                              steps_per_epoch=stepsPerEpochVal,
                              epochs=epochsVal,
                              validation_data=(X_validation,Y_validation),
                              shuffle=1)    # 打乱(洗牌)

# 可视化loss的变化
plt.figure(1)
plt.plot(history.history['loss'])       # 画图
plt.plot(history.history['val_loss'])
plt.legend(['training','validation'])   # 绘制图例
plt.title('Loss')
plt.xlabel('epoch')
plt.ylabel('loss')
# 可视化准确率精度的变化
plt.figure(2)
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.legend(['training','validation'])   # 绘制图例
plt.title('Accuracy')
plt.xlabel('epoch')
plt.ylabel('accuracy')
plt.show()

# 对模型进行评估
score = model.evaluate(X_test, Y_test, verbose=0)   # verbose=0不在标准输出流 输出日志信息
print('Test Score = ', score[0])        # 打印测试的分数
print('Test Accuracy = ', score[1])     # 打印测试的准确率

########### 保存模型文件以便下次使用 ##################################
pickle_out = open("model_trained.p", "wb")
pickle.dump(model, pickle_out)    # 序列化对象,将对象model保存到文件pickle_out中
pickle_out.close()

OCR_CNN_Test.py

import numpy as np
import cv2
import pickle

##################################
width = 640
height = 480
threshold = 0.7     # 阈值(判定预测的标签是否通过)
##################################

cap = cv2.VideoCapture(0)
# 把宽高改成 640*480
cap.set(3, width)
cap.set(4,height)

pickle_in = open("model_trained.p", "rb")
model = pickle.load(pickle_in)      # 加载数据

########### 对图片预处理 ##################################
def preProcessing(img):
    img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    img = cv2.equalizeHist(img)    # 直方图均衡化处理(图像增强,提升图像质量)
    img = img/255                  # 将值控制在0到1之间
    return img

while True:
    success, imgOriginal = cap.read()
    img = np.asarray(imgOriginal)
    img = cv2.resize(img, (32,32))
    img = preProcessing(img)
    # cv2.imshow("Processed Image", img)
    img = img.reshape(1, 32, 32, 1)

    # Predict 预测
    classIndex = int(model.predict_classes(img))    # 返回预测出的类别的 索引
    # print(classIndex)                               # 打印预测出的标签索引
    predictions = model.predict(img)                # 用模型来实时预测图像的标签
    # print(predictions)                              # 打印预测出的 标签概率值列表
    probVal = np.amax(predictions)                  # 找出概率数组predictions中的最大可能性
    # print(probVal)                                  # 打印预测出的 最大可能性
    print(classIndex, probVal)                      # 打印预测出的标签及其概率值

    # 若概率值>0.7,则再摄像头获取的视频窗口左上角绘制预测出的标签及其概率值
    if probVal > threshold:
        cv2.putText(imgOriginal, str(classIndex)+"  "+str(probVal),
                    (50,50), cv2.FONT_HERSHEY_COMPLEX, 1, (0,0,255), 1)
    cv2.imshow("Original Image", imgOriginal)

    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

实现:在tansorflow开发环境下利用CNN来训练网络,从而对数字图像进行分类,使其测试集准确率达到99.85%。然后调用电脑摄像头进行实时检测,并在视频窗口中实时绘制预测出的数字标签及其概率值。

15参考及数据集出处:https://gitee.com/zzhzwh/Opencv-project/tree/main

  • 18
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值