torch.rsqrt用法

torch.rsqrt:
在这里插入图片描述
代码示例:

import torch
a=torch.tensor([1.,2.,3.,4.])
print("a:",a)
b=torch.rsqrt(a)
print("b:",b)

输出:

a: tensor([1., 2., 3., 4.])
b: tensor([1.0000, 0.7071, 0.5774, 0.5000])

``` # Compute padding. pad_total = (self.out_size - 1) * self.down_factor + 1 # Desired output size before downsampling. pad_total -= (self.in_size + self.conv_kernel - 1) * self.up_factor # Input size after upsampling. pad_total += self.up_taps + self.down_taps - 2 # Size reduction caused by the filters. pad_lo = (pad_total + self.up_factor) // 2 # Shift sample locations according to the symmetric interpretation (Appendix C.3). pad_hi = pad_total - pad_lo self.padding = [int(pad_lo[0]), int(pad_hi[0]), int(pad_lo[1]), int(pad_hi[1])] def forward(self, x, w, noise_mode='random', force_fp32=False, update_emas=False): assert noise_mode in ['random', 'const', 'none'] # unused misc.assert_shape(x, [None, self.in_channels, int(self.in_size[1]), int(self.in_size[0])]) misc.assert_shape(w, [x.shape[0], self.w_dim]) # Track input magnitude. if update_emas: with torch.autograd.profiler.record_function('update_magnitude_ema'): magnitude_cur = x.detach().to(torch.float32).square().mean() self.magnitude_ema.copy_(magnitude_cur.lerp(self.magnitude_ema, self.magnitude_ema_beta)) input_gain = self.magnitude_ema.rsqrt() # Execute affine layer. styles = self.affine(w) if self.is_torgb: weight_gain = 1 / np.sqrt(self.in_channels * (self.conv_kernel ** 2)) styles = styles * weight_gain # Execute modulated conv2d. dtype = torch.float16 if (self.use_fp16 and not force_fp32 and x.device.type == 'cuda') else torch.float32 x = modulated_conv2d(x=x.to(dtype), w=self.weight, s=styles, padding=self.conv_kernel-1, demodulate=(not self.is_torgb), input_gain=input_gain) # Execute bias, filtered leaky ReLU, and clamping. gain = 1 if self.is_torgb else np.sqrt(2) slope = 1 if self.is_torgb else 0.2 x = filtered_lrelu.filtered_lrelu(x=x, fu=self.up_filter, fd=self.down_filter, b=self.bias.to(x.dtype), up=self.up_factor, down=self.down_factor, padding=self.padding, gain=gain, slope=slope, clamp=self.conv_clamp) # Ensure correct shape and dtype. misc.assert_shape(x, [None, self.out_channels, int(self.out_size[1]), int(self.out_size[0])]) assert x.dtype == dtype return x```解释这段代码
最新发布
03-11
<think>好的,我现在要解释用户提供的这段代码。首先,我需要整体看一下代码的结构和功能。看起来这段代码是PyTorch的一个自定义模块,可能用于生成对抗网络(GAN)中的上采样或下采样操作,特别是StyleGAN之类的模型,因为里面有提到modulated_conv2d和affine层,这些在StyleGAN中常见。 首先,代码分为两部分:padding的计算和forward方法。我需要分别理解这两个部分的作用。 关于padding的计算部分,用户给出了一个注释,说明这是在计算填充量。首先,pad_total的计算涉及输出尺寸、输入尺寸、卷积核大小、上采样和下采样因子,以及滤波器的tap数。这看起来像是在根据输入输出尺寸和上下采样的需求,计算需要填充的总量,然后分配到pad_lo和pad_hi,这可能是在左右或上下两侧分配填充量,保持对称。这部分可能需要进一步分析每个步骤的数学推导。 然后是forward方法,参数包括输入x、样式w、噪声模式等。在forward中,首先进行了一些断言检查,确保输入的尺寸正确。接着,如果update_emas为真,会更新magnitude_ema,这可能是在跟踪输入的大小,用于归一化。然后计算input_gain,作为EMA的逆平方根,用于后续调整输入幅度。 执行affine层,将w转换为styles。如果是toRGB层(即生成RGB图像的最后层),会应用权重增益。然后执行modulated_conv2d,这里使用了调制卷积,这可能是指StyleGAN2中的权重调制机制。数据类型可能根据是否使用fp16来决定。 接下来是偏置、过滤的leaky ReLU和钳位操作。这里使用了filtered_lrelu,这可能是一种结合上采样和下采样滤波器的激活函数,带有增益和斜率参数。最后确保输出的形状和数据类型正确。 现在需要详细解释每个步骤,尤其是padding的计算部分。可能需要用公式表示各个步骤,比如pad_total的计算。例如: pad_total = (out_size -1)*down_factor +1 - (in_size + conv_kernel -1)*up_factor + up_taps + down_taps -2 这可能涉及到确保在经过上采样、卷积、下采样等操作后,输出尺寸正确,因此需要计算所需的填充量。这里的每个项可能需要更详细的解释,例如为什么这样组合。 在forward过程中,modulated_conv2d是StyleGAN2中的关键部分,它根据样式向量调整卷积权重。filtered_lrelu可能结合了上采样或下采样的滤波操作,比如在激活时进行抗锯齿处理。 需要注意用户提到的系统级指令,比如数学表达式需要用$...$,独立公式用$$...$$,并且用中文回答,结构清晰。需要确保解释准确,不遗漏关键点,如EMA的作用、affine变换、调制卷积、滤波激活等。 可能的疑问点:pad_total的计算是否考虑了上采样和下采样的步长?如何保证最终的输出尺寸正确?up_taps和down_taps具体指什么?这部分可能需要进一步查阅相关论文或代码注释,但根据当前代码,假设这些参数是滤波器的大小或抽头数,影响填充量。 总之,需要将代码拆解为各个功能模块,逐步解释每个变量的作用,数学计算的意义,以及整个前向传播流程。</think>以下是对代码的逐层解析: ### 一、Padding计算(核心对齐逻辑) 该模块通过数学公式计算卷积前后的尺寸对齐,保证上/下采样后的尺寸匹配。主要步骤: 1. **目标尺寸计算** $$pad_{\text{total}} = (\text{out\_size} - 1) \times \text{down\_factor} + 1$$ - 表示下采样前需要的中间尺寸 2. **输入尺寸扣除** $$pad_{\text{total}} -= (\text{in\_size} + \text{conv\_kernel} - 1) \times \text{up\_factor}$$ - 计算上采样后的输入尺寸 3. **滤波器尺寸补偿** $$pad_{\text{total}} += (\text{up\_taps} + \text{down\_taps} - 2)$$ - 补偿上下采样滤波器的尺寸缩减 4. **对称填充分配** $$pad_{\text{lo}} = \frac{pad_{\text{total}} + \text{up\_factor}}{2}$$ $$pad_{\text{hi}} = pad_{\text{total}} - pad_{\text{lo}}$$ ### 二、前向传播流程(关键操作链) ```python def forward(...): ``` 1. **输入验证** - 检查noise_mode合法性 - 验证输入张量x的尺寸格式:[batch, in_channels, height, width] - 验证样式向量w的尺寸:[batch, w_dim] 2. **动态归一化** ```python self.magnitude_ema.copy_(magnitude_cur.lerp(...)) input_gain = self.magnitude_ema.rsqrt() ``` - 使用指数移动平均(EMA)跟踪输入幅度的平方均值 - 通过逆平方根实现自适应幅值归一化 3. **样式调制** ```python styles = self.affine(w) # 全连接层映射样式向量 if self.is_torgb: styles *= 1/√(in_channels×conv_kernel²) # 稳定RGB输出 ``` - 将潜在向量w转换为卷积权重调制参数 4. **调制卷积核** ```python x = modulated_conv2d(...) # 核心操作 ``` - 实现StyleGAN2的特征解耦机制 - 根据styles动态调整卷积核权重 5. **非线性激活** ```python filtered_lrelu(...) # 带滤波的激活 ``` - 结合上/下采样滤波器的leaky ReLU - 关键参数: - `gain=√2`(保持方差稳定) - `slope=0.2`(标准leaky参数) - `clamp`防止数值爆炸 ### 三、设计特点分析 1. **抗锯齿处理** - 通过`up_filter`和`down_filter`实现频域控制 - 配合padding策略消除混叠现象 2. **数值稳定性** - EMA动态归一化 - weight_gain显式控制 - clamp截断保护 3. **硬件适配** - 自动选择float16/float32 - CUDA设备优化 ### 四、典型应用场景 该模块常见于: 1. StyleGAN系列生成器的特征变换层 2. 渐进式生成结构中的分辨率切换模块 3. 需要频域控制的超分辨率网络 建议结合附录C.3的对称解释原则,理解padding分配的数学依据。核心思想是通过精确的几何级数计算,实现任意缩放倍率下的尺寸对齐。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值