#include<iostream>
using namespace std;
float Q_rsqrt(float number)
{
long i;
float x2, y;
const float threehalfs = 1.5F;
x2 = number * 0.5F;
y = number;
i = *(long *)&y; // evil floating point bit level hacking
i = 0x5f3759df - (i >> 1); // what the fuck?
y = *(float *)&i;
y = y * (threehalfs - (x2 * y * y)); // 1st iteration
y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
return y;
}
int main(){
cout << Q_rsqrt(9) << endl;//0.333333
cout << Q_rsqrt(25) << endl;//0.199999
}
0x5f3759df
这个数字,大大加快了平方根的逼近速度,现在貌似没有数学公式可以直接说明这个数的产生,但是
在Charles McEniry的论文中,他使用了一种类似Lomont但更复杂的方法来优化R值:他最开始使用穷举算法,所得结果与Lomont相同;而后他尝试用带权二分法寻找最优值,所得结果恰是代码中所使用的魔术数字0x5f3759df,因此,McEniry认为,这一常数最初或许便是以“在可容忍误差范围内使用二分法”的方式求得
转自维基百科