平方根倒数速算法及解释

#include<iostream>
using namespace std;

float Q_rsqrt(float number)
{
	long i;
	float x2, y;
	const float threehalfs = 1.5F;
	x2 = number * 0.5F;
	y = number;
	i = *(long *)&y; // evil floating point bit level hacking
	i = 0x5f3759df - (i >> 1); // what the fuck?
	y = *(float *)&i;
	y = y * (threehalfs - (x2 * y * y)); // 1st iteration
	y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed

	return y;
}

int main(){
	cout << Q_rsqrt(9) << endl;//0.333333
	cout << Q_rsqrt(25) << endl;//0.199999
}

0x5f3759df
这个数字,大大加快了平方根的逼近速度,现在貌似没有数学公式可以直接说明这个数的产生,但是

在Charles McEniry的论文中,他使用了一种类似Lomont但更复杂的方法来优化R值:他最开始使用穷举算法,所得结果与Lomont相同;而后他尝试用带权二分法寻找最优值,所得结果恰是代码中所使用的魔术数字0x5f3759df,因此,McEniry认为,这一常数最初或许便是以“在可容忍误差范围内使用二分法”的方式求得


转自维基百科

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值