信源无失真编码实质:熵总量是不变的,一个信源的分布也是不能改变的,我们能做的只是通过分组的手段,定义信道能传输的符号并且它和信源原始进行一一映射,使得编码后每一个符号尽可能携带更多的信息量,把平均码长缩短,达到压缩信源的目的。
渐进等同分割性质::一个随机过程是非等概分布的,对它进行定长分割,把随机过程符号切割成段,每段的长度逐渐越来越大,结果发现:当长度足够大是,那么每一段的出现可能组合是等概分布的(段长足够大时,每一段出现的可能的组合几乎呈相同概率发生).
典型序列:假设一个信源的符号有x个,段长为n,那个所有可能的字母符号组合为:,但是里面的典型序列(经常出现)却大约有:个,是很小的一个子集,但是:在段长足够长,典型序列几乎一定会出现,也就是非典型序列几乎不会出现,而且:每一个典型序列(典型集的元素)几乎成等概分布,也就有了无失真定长编码的基础。
目录
一:信源编码基本概念
信源编码:将信源符号序列按一定数学规律映射成码符号序列的过程
具体来说:将信源符号集中的符号(或长为N的信源符号序列)映射成码符号序列,每个是由长度为的码符号组成。
信源编码的作用和目的
作用:1:使得信源符号适合信道的传输2:用尽可能少的符号来传递信源信息,提高有效性。
目的:通过压缩信源的冗余度来提高通信有效性
冗余度取决于符号间记忆的相关性以及符号概率分布的非均匀性。
二:定长无失真信源编码定理
1:典型序列性质的数学表达。
l:是信源符号的平均码长
2:定长码(所有码字的码长相同)
3:定长信源编码定理(考虑N次扩展信源)
注意:H(S)和logr的底数必须相同。且:无失真编码是使得误码率足够小而不是必须为0;想实现无失真编码,扩展次数要足够大。
三:变长无失真信源编码
又叫:香农第一定理,它给出了平均码长的压缩下限,与信源的熵有关。
:是编码信源符号所需的平均码长的下界。
四:几种码
1:非奇异码
2:唯一可译码(不存在译码的二义性)
3:即时码
习题:会识别变长码,定长码,奇异码和扩展信源
定长码:码一 变长码:码二码三 奇异码:码三(11可以表示两个符号)
所谓2次扩展就是:N*N.自己和自己,自己和别人的连接
几种码的关系
非奇异码是保证无失真的前提,唯一可译码是保证译码唯一的前提,即时码是性质很好的一类码,读到便可直接译出。
五:前缀码约束条件
前缀码:可以用码树去表示,而且选用的符号(又叫:码本)没有字树,只能作为叶子。
kraft不等式
设符号表中的原始符号为:,在大小为D进制的字符集上编码为前缀码的码字长度为:,则满足:反之, 若码长约束满足上述不等式 , 则必存在一组前缀码符合相应的码字长度。
给出了:前缀码(即时码)的充要条件。
平均码长界限定理
TH:对任意随机变量X进行D-进制前缀码编码,得到的码长:L(平均码长不会小于熵)
最优码长满足:
注:
定理说明:为降低平均码长,大概率的符号要用较短的码字表示,小概率符号用较长的码字符号
习题: