无失真信源编码2

  信源无失真编码实质:熵总量是不变的,一个信源的分布也是不能改变的,我们能做的只是通过分组的手段,定义信道能传输的符号并且它和信源原始进行一一映射,使得编码后每一个符号尽可能携带更多的信息量,把平均码长缩短,达到压缩信源的目的。
  渐进等同分割性质:一个随机过程是非等概分布的,对它进行定长分割,把随机过程符号切割成段,每段的长度逐渐越来越大,结果发现:当长度足够大是,那么每一段的出现可能组合是等概分布的(段长足够大时,每一段出现的可能的组合几乎呈相同概率发生).
典型序列:假设一个信源的符号有x个,段长为n,那个所有可能的字母符号组合为:x^{n},但是里面的典型序列(经常出现)却大约有:2^{nH(X)}个,是很小的一个子集,但是:在段长足够长,典型序列几乎一定会出现,也就是非典型序列几乎不会出现,而且:每一个典型序列(典型集的元素)几乎成等概分布,也就有了无失真定长编码的基础。


目录

一:信源编码基本概念

                  信源编码的作用和目的

二:定长无失真信源编码定理

三:变长无失真信源编码 

四:几种码

五:前缀码约束条件

                kraft不等式


一:信源编码基本概念

信源编码:将信源符号序列按一定数学规律映射成码符号序列的过程
具体来说:将信源符号集中的符号s_{i}(或长为N的信源符号序列)映射成码符号序列w_{i},每个w_{i}是由长度为l_{i}的码符号x_{i}组成。

 信源编码的作用和目的

作用:1:使得信源符号适合信道的传输2:用尽可能少的符号来传递信源信息,提高有效性。
目的:通过压缩信源的冗余度来提高通信有效性
冗余度取决于符号间记忆的相关性以及符号概率分布的非均匀性。

二:定长无失真信源编码定理

1:典型序列性质的数学表达。

l:是信源符号的平均码长
2:定长码(所有码字的码长相同) 

 3:定长信源编码定理(考虑N次扩展信源)

 注意:H(S)和logr的底数必须相同。且:无失真编码是使得误码率足够小而不是必须为0;想实现无失真编码,扩展次数要足够大。

三:变长无失真信源编码 

又叫:香农第一定理,它给出了平均码长的压缩下限,与信源的熵有关。

 H_{r}(S):是编码信源符号所需的平均码长的下界。

四:几种码

1:非奇异码

 2:唯一可译码(不存在译码的二义性)

3:即时码

习题:会识别变长码,定长码,奇异码和扩展信源 

定长码:码一   变长码:码二码三     奇异码:码三(11可以表示两个符号)
所谓2次扩展就是:N*N.自己和自己,自己和别人的连接

几种码的关系 

非奇异码是保证无失真的前提,唯一可译码是保证译码唯一的前提,即时码是性质很好的一类码,读到便可直接译出。

五:前缀码约束条件

前缀码:可以用码树去表示,而且选用的符号(又叫:码本)没有字树,只能作为叶子。

kraft不等式

设符号表中的原始符号为:S={s_{1},s_{2},..,s_{n}},在大小为D进制的字符集上编码为前缀码的码字长度为:l_{1},l_{2},...,l_{n},则满足:反之, 若码长约束满足上述不等式  , 则必存在一组前缀码符合相应的码字长度。
给出了:前缀码(即时码)的充要条件

平均码长界限定理
TH:对任意随机变量X进行D-进制前缀码编码,得到的码长:L\geq H_{D}(X)(平均码长不会小于熵)
最优码长L^{*}满足:H_{D}(X)\leq L^{*}\leq H_{D}(X)+1

注:H_{D}(X)=H(S)/logr 
定理说明:为降低平均码长,大概率的符号要用较短的码字表示,小概率符号用较长的码字符号

习题:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值