院士名单,公布!

来源:青塔Pro

近日,2023年欧洲工程院院士增选名单公布。共有6位华人科学家当选本年度的欧洲工程院院士。

新晋院士有来自南京航空航天大学的常焜教授、香港城市大学楼雄文教授、加州大学伯克利分校杨培东教授(中国科学院外籍院士)、斯坦福大学崔屹教授、斯坦福大学鲍哲南教授和美国西北大学黄永刚教授(中国科学院外籍院士)。‍‍‍‍‍‍‍

欧洲工程院院士是国际工程科学技术领域的最高学术称号,是对在工程科学技术领域做出杰出贡献的专家学者的崇高认可和赞誉。‍‍‍‍

截止2023年7月,欧洲工程院有约390名院士(含外籍院士),他们来自全球25个国家和地区,涵盖了各个工程领域,如土木、机械、电子、化学、生物、医学、人工智能等。其中有37位诺贝尔奖得主、29菲尔兹奖得主、17图灵奖得主等国际知名的奖项获得者。

当选华人学者如下‍

常焜‍‍‍‍‍‍

da2bcae5425865b12cf2d2e2cec6749a.png

常焜,南京航空航天大学教授,博士生导师,入选国家青年人才计划、江苏省特聘教授、江苏省“六大人才高峰”高层次人才、南航“长空英才”计划,主持国家自然科学基金、国防科技创新项目,以及留学人员科技创新项目(A类)等多个项目,获“中国百篇最具影响的国际学术论文”奖。多年来围绕新型复合功能纳米材料、高效稳定太阳能催化转换材料、水系安全规模储能材料,开展材料结构及界面调控研究,将纳米材料表界面催化机制、功能纳米复合材料制造及异质结构最大化有机交叉与结合。在催化剂界面反应调控、催化反应选择性、材料制备与性能表征评价等方面积累并凝练了关键技术及科学理论,实现了太阳能的高效利用及界面有序催化转换,开发了面向下一代规模化安全储能的碱性水系电极材料。近年来在J. Am. Chem. Soc.、Adv. Mater.、Adv. Energy Mater.、Adv. Funct. Mater.、ACS Catal.、ACS Nano等高水平杂志发表SCI论文110余篇,他引13000余次,引用次数过500次论文6篇,单篇最高引用超1600余次,18篇入选SCI高被引论文,H-因子50,授权国家发明专利20余项。

楼雄文‍‍

2134c19e6403288424e5fba7f77815de.png

楼雄文教授于2008 年,他获得康奈尔大学化学工程博士学位。毕业后,他立即加入南洋理工大学,担任助理教授。2015 年9月,他晋升为正教授。他于2023年2月调任香港城市大学讲座教授。2022 年当选为新加坡国家科学院院士和新加坡工程院院士。 

他的主要研究兴趣是用于能源应用的纳米结构材料的设计合成,包括电池、电催化和光催化。截至2023年10月,他已发表论文390多篇,总被引次数>130,100次,h指数为214(谷歌学术)。2014年,他连续9年被汤森路透/科睿唯安列为高被引研究员—— 2022 年在多个领域,包括化学、材料科学、物理和环境。

他目前担任《科学进展》的副主编和《化学通讯》的副主编。

杨培东

6fc4baaac748f5bc10249dba36d565c1.png

杨培东(Peidong Yang),美国国籍,材料化学、纳光电子学和纳流体学家。1971年出生于江苏苏州市。1993年获得中国科学技术大学应用化学学士学位,1997年获得哈佛大学化学博士学位。1999年进入美国加州大学伯克利分校化学系任教,成为终身教授,加州大学伯克利分校化学系S. K.和Angela Chan主任教授,上海科技大学物质科学与技术学院创始院长。2012年当选为美国艺术与科学院院士,2016年当选为美国国家科学院院士,2020年当选为美国科学促进会会士,2021年当选为中国科学院外籍院士。

利用太阳能将二氧化碳转化成人类所需的碳水化合物—人工光合作用研究历史悠久意义重大,是极具挑战性的化学问题。杨培东在人工光合作用、纳米激光器、光电纳米器件、纳米热电学、低维纳米组装等领域都作出了原创性杰出贡献,对21世纪纳米科技产生了重大影响,是国际化学和纳米材料科学领域公认的卓越科学家。

崔屹

010dfd5bc35aee13a702154ed71ac6da.png

崔屹,1976年出生于广西壮族自治区来宾市,纳米材料科学家,美国国家科学院院士,斯坦福大学教授、博士生导师。

崔屹于1998年获得中国科学技术大学理学学士学位;2002年获得美国哈佛大学博士学位;2003年在加州大学伯克利分校从事博士后研究;2004年入选世界顶尖100名青年发明家;2005年进入斯坦福大学材料科学与工程系任教,先后担任助理教授、副教授、教授;2014年获得首届纳米能源奖;2017年获得布拉瓦尼克青年科学大奖之物质科学与工程技术奖;2018年出任中国科学技术大学应用化学系系主任;2022年当选为美国国家科学院院士。

崔屹主要研究内容为纳米材料在能量存储、光伏器件、拓扑绝缘体、生物及环境等方向的应用

鲍哲南

a80c105fa6dcef222aa96e4ddf9827ac.png

鲍哲南,1970年出生于中国南京,化学家,美国国家工程院院士、美国艺术与科学院院士,斯坦福大学化学工程系教授。

1987年鲍哲南考取南京大学化学系;1995年获得美国芝加哥大学化学系博士学位后进入了贝尔实验室任职;2001年获得贝尔实验室杰出研究人员称号;2004年进入斯坦福大学化学系任教;2007年获得斯坦福大学工程教学女教师优秀奖;2010年底作为创办人之一的C3Nano公司在美国硅谷成立;2011年获得影响世界华人大奖;2015年被选为《自然》杂志年度十大人物;2016年当选美国国家工程院院士;2017年获得世界杰出女科学家成就奖;2021年4月当选美国艺术与科学院院士。 

鲍哲南一直致力于化学、材料科学、能源、纳米电子学和分子电子学等领域的研究,研究领域涉及能源、有机和高分子半导体材料、传感材料和分子电子器件、纳米电子学。

黄永刚

835f10dc5eb5ddfb0e25e62f001d961c.png

黄永刚,1962年11月出生于中国北京,固体力学家,欧洲科学与艺术院院士、美国国家工程院院士、欧洲科学院院士、中国科学院外籍院士、美国国家科学院院士、美国艺术与科学院院士,美国西北大学冠名讲席教授 。

黄永刚于1984年从北京大学力学系毕业后赴美留学;1990年获得美国哈佛大学博士学位;1995年担任美国密歇根科技大学副教授;1998年进入伊利诺伊大学厄巴纳-香槟分校任教,先后担任副教授、Grayce Wicall Gauthier教授、Shao Lee Soo教授;2000年获得中国国家自然科学基金委员会海外杰出青年基金资助;2001年获得德国洪堡科学家和学者基金资助;2007年进入美国西北大学任教;2017年当选为美国国家工程院院士 ,同年当选为中国科学院外籍院士;2020年当选为美国国家科学院院士和美国艺术与科学院院士。

黄永刚主要研究领域为研究材料和电子器件的力学行为。

推荐阅读

欢迎大家加入DLer-计算机视觉技术交流群!

大家好,群里会第一时间发布计算机视觉方向的前沿论文解读和交流分享,主要方向有:图像分类、Transformer、目标检测、目标跟踪、点云与语义分割、GAN、超分辨率、人脸检测与识别、动作行为与时空运动、模型压缩和量化剪枝、迁移学习、人体姿态估计等内容。

进群请备注:研究方向+学校/公司+昵称(如图像分类+上交+小明)

bf2e51e3d8072ac560576f7fd74c3ce1.jpeg

👆 长按识别,邀请您进群!

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值