欠拟合与过拟合

本文详细介绍了模型评估的标准,包括均方误差(MSE)、均方根误差(RMSE)和R2分数。解释了过拟合和欠拟合在回归和分类问题中的表现,并阐述了偏差和方差的概念。过拟合表现为训练集表现好,测试集表现差;欠拟合则是训练和测试集表现都差。解决方法包括增加特征、调整模型复杂度、增大数据量和使用正则化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、评价标准

  1. MSE(均方误差)=(预测值-真实值)2/n
  2. RMSE(均方根误差)=√ ̄MSE
  3. R2=1-MSE/var(y) ——R2表示拟合程度,R2越大,越接近1表示拟合程度越好;R2越小,越接近0表示拟合程度越差。

二、欠拟合与过拟合
(1)回归中的评价

  1. 过拟合:模型在训练集中的MSE非常小而在测试集中的MSE非常大。当数据对应的最好的模型是X的2次方而你选定的模型是X的3次方以及以上就容易产生这种情况。也就是说模型的复杂度相对越高越容易发生过拟合。
  2. 欠拟合:模型在训练集与测试集中的MSE都非常大。当数据对应的最好的模型是X的2次方而你选定的模型是X的1次方就容易产生这种情况。也就是说模型的复杂度相对越低越容易发生欠拟合。

(2)分类中的评价

  1. 过拟合:模型在训练集中的准确率高而在测试集中的准确率低。
  2. 欠拟合:模型在训练集与测试集中的准确率都非常低。

三、偏差与方差

  1. 偏差:我们选择的模型与最好的模型之间的差距,衡量我们是否找到最好的模型或者与最好模型的接近程度,偏差越大越容易发生欠拟合。
  2. 方差:模型的预测结果随着数据的增大与真实数据的差别越大,此时模型预测结果与最好模型的差距就叫方差,方差越大越容易发生过拟合。

四、偏差与方差的解决办法

  1. 偏差比较大,则欠拟合。解决办法:(1)增加特征数据提高拟合程度,避免欠拟合。(2)增加模型的复杂度提高拟合程度,避免欠拟合。
  2. 方差比较大,则过拟合。解决办法:(1)增加数据特别是大数据,有利于降低模型的复杂度,提高模型在大数据的预测能力,避免过拟合。(2)添加正则,同时求出关于w的损失函数与w的最小值,w越小,曲线就越平滑,模型的拟合程度就越好。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值