数据结构与算法之状压DP剪枝
状压DP(State Compressed Dynamic Programming)是一种常用的动态规划算法,用于解决状态空间较大的问题。其核心思想是将状态用二进制数表示,以减少存储空间和计算时间。状压DP常用于求解集合、排列、子集等问题。
在状压DP的算法中,剪枝是一种常用的优化技巧。剪枝可以大大减少搜索的次数,提高求解效率。
剪枝的原理是基于以下观察:
- 有些状态是无法到达的,因为它们不满足问题的约束条件。
- 有些状态可以被其它更优的状态替代,因此不需要计算它们。
基于以上观察,可以在状态转移中加入一些判断条件,判断某些状态是否需要进行计算。这种判断条件就叫做剪枝。
例如,在求解旅行商问题(TSP)时,可以通过判断当前走过的路径长度是否已经超过最优解,来进行剪枝。如果当前路径长度已经大于最优解,那么后续搜索就可以停止,因为后续路径长度一定会更大。
另外,还可以通过预处理一些数据,来减少搜索的次数。例如,在求解子集和问题时,可以预处理出每个数在所有子集中的状态,以避免重复计算。
总之,剪枝在状压DP中是一种非常有效的优化技巧,可以大大提高算法的求解效率。
一、C 状压DP剪枝 源码实现及详解
-
什么是状态压缩DP?
状态压缩DP是一种基于状态压缩的动态规划算法,它的基本思想是将一个状态用一个整数来表示,从而避免使用数组来存储状态,达到优化空间效果的目的。 -
为什么需要状态压缩DP?
在一些特殊的问题中,状态的数目非常大,甚至超出了计算机的存储容量,无法使用数组来存储状态,这时就需要用到状态压缩DP来解决这些问题。 -
状态压缩DP的实现方式
状态压缩DP的实现方式有两种,一种是使用二进制位来表示状态,另一种是使用其他进制来表示状态,如八进制、十六进制等。这里我们以使用二进制位来表示状态为例进行讲解。 -
C语言状态压缩DP剪枝代码实现
下面是一个使用C语言实现的状态压缩DP剪枝代码实现。该代码实现了求解给定长度为N的01字符串中包含连续1的子串数目的问题。
#include<stdio.h>
#include<string.h>
#define MAXN 25
#define max(a,b) ((a)>(b)?(a):(b))
int N,a[MAXN],f[1<<MAXN],ans=0;
int main()
{
scanf("%d",&N);
for(int i=0;i<N;i++)
scanf("%d",&a[i]);
for(int i=0;i<N;i++)
{
if(a[i]==1)
{
int j=i;
while(j<N&&a[j]==1) j++;
for(int k=i;k<j;k++)
f[1<<k]=1;
i=j-1;
}
}
for(int i=0;i<(1<<N);i++)
{
if(f[i])
{
for(int j=0;j<N;j++)
{
if((i>>j)&1)
{
if((i>>(j+1)&1)) f[i|(1<<j)]=1;
}
}
}
}
for(int i=0;i<(1<<N);i++)
{
int cnt=0;
for(int j=0;j<N;j++)
{
if((i>>j)&1) cnt++;
}
if(f[i]) ans=max(ans,cnt);
}
printf("%d\n",ans);
return 0;
}
- 状态压缩DP剪枝代码实现详解
下面对代码中的各个部分进行详细解释。
(1)定义变量和常量
#define MAXN 25
#define max(a,b) ((a)>(b)?(a):(b))
int N,a[MAXN],f[1<<MAXN],ans=0;
MAXN为字符串最大长度,a数组用来存储输入的字符串,f数组用来存储状态转移的结果,ans为最终结果。
(2)读入字符串
scanf("%d",&N);
for(int i=0;i<N;i++)
scanf("%d",&a[i]);
读入字符串长度和字符串。
(3)预处理连续1的子串
for(int i=0;i<N;i++)
{
if(a[i]==1)
{
int j=i;
while(j<N&&a[j]==1) j++;
for(int k=i;k<j;k++)
f[1<<k]=1;
i=j-1;
}
}
将连续1的子串转换为对应的状态,并将该状态的值设为1,表示该状态是合法的。
(4)状态转移
for(int i=0;i<(1<<N);i++)
{
if(f[i])
{
for(int j=0;j<N;j++)
{
if((i>>j)&1)
{
if((i>>(j+1)&1)) f[i|(1<<j)]=1;
}
}
}
}
对于每个合法的状态i,在该状态的基础上转移出新的合法状态。具体的转移方式是,如果该状态中存在连续的两个1,即第j位和第j+1位均为1,则将该状态i中第j+1位设为1,得到新的状态i|(1<<j),并将该状态的值设为1,表示该状态是合法的。
(5)统计结果
for(int i=0;i<(1<<N);i++)
{
int cnt=0;
for(int j=0;j<N;j++)
{
if((i>>j)&1) cnt++;
}
if(f[i]) ans=max(ans,cnt);
}
遍历所有状态i,统计其中二进制位为1的个数cnt,并将结果与之前的最大值ans取最大值,最终得到答案。
- 总结
状态压缩DP是一种非常有效的动态规划算法,特别适用于状态数目非常庞大的问题。在实现状态压缩DP时,需要注意状态的定义、状态转移和结果统计等方面的细节,才能得到正确的结果。
二、C++ 状压DP剪枝 源码实现及详解
状压DP是一种常用的动态规划算法,特别适用于某些具有二进制状态的问题,比如选取一个由n个元素组成的集合的子集,用二进制的1和0来表示是否选择了某个元素。在这里,我们将详细讨论一下C++中的状压DP剪枝实现方法。
- 状态压缩
位运算是实现状压DP的关键,它可以将集合压缩成一个二进制数。例如,假设我们有一个集合S = {1,2,3,4},其中元素1和3被选择,那么我们可以用二进制数1010(十进制数10)来表示这个集合。
那么,一个大小为n的集合的所有子集都可以用一个n位的二进制数表示,其中第i位表示集合中第i个元素是否被选择。比如, S = { 1 , 2 , 3 } S=\{1,2,3\} S={ 1,2,3},则子集 { 1 , 2 } \{1,2\} { 1,2}可以表示为二进制数101,也就是5。
- 状态转移方程
DP状态转移方程和常规的DP算法类似,不过需要将状态压缩成二进制数,以方便计算。我们以背包问题为例,假设有一个容量为V的背包和n个物品,第i个物品的体积为v[i],价值为w[i]。我们可以用一个1~n的二进制数表示集合,其中第i位表示是否选择第i个物品,对于状态i,其代表的集合中物品的体积和价值可以分别表示为