数据结构与算法之状压DP剪枝

本文介绍了C、C++和Java中的状压DP剪枝技术,包括原理、状态压缩、剪枝策略以及在背包问题和子集问题上的应用实例,展示了如何通过剪枝优化动态规划算法以减少计算量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

状压DP(State Compressed Dynamic Programming)是一种常用的动态规划算法,用于解决状态空间较大的问题。其核心思想是将状态用二进制数表示,以减少存储空间和计算时间。状压DP常用于求解集合、排列、子集等问题。

在状压DP的算法中,剪枝是一种常用的优化技巧。剪枝可以大大减少搜索的次数,提高求解效率。

剪枝的原理是基于以下观察:

  • 有些状态是无法到达的,因为它们不满足问题的约束条件。
  • 有些状态可以被其它更优的状态替代,因此不需要计算它们。

基于以上观察,可以在状态转移中加入一些判断条件,判断某些状态是否需要进行计算。这种判断条件就叫做剪枝。

例如,在求解旅行商问题(TSP)时,可以通过判断当前走过的路径长度是否已经超过最优解,来进行剪枝。如果当前路径长度已经大于最优解,那么后续搜索就可以停止,因为后续路径长度一定会更大。

另外,还可以通过预处理一些数据,来减少搜索的次数。例如,在求解子集和问题时,可以预处理出每个数在所有子集中的状态,以避免重复计算。

总之,剪枝在状压DP中是一种非常有效的优化技巧,可以大大提高算法的求解效率。

在这里插入图片描述



一、C 状压DP剪枝 源码实现及详解

  1. 什么是状态压缩DP?
    状态压缩DP是一种基于状态压缩的动态规划算法,它的基本思想是将一个状态用一个整数来表示,从而避免使用数组来存储状态,达到优化空间效果的目的。

  2. 为什么需要状态压缩DP?
    在一些特殊的问题中,状态的数目非常大,甚至超出了计算机的存储容量,无法使用数组来存储状态,这时就需要用到状态压缩DP来解决这些问题。

  3. 状态压缩DP的实现方式
    状态压缩DP的实现方式有两种,一种是使用二进制位来表示状态,另一种是使用其他进制来表示状态,如八进制、十六进制等。这里我们以使用二进制位来表示状态为例进行讲解。

  4. C语言状态压缩DP剪枝代码实现
    下面是一个使用C语言实现的状态压缩DP剪枝代码实现。该代码实现了求解给定长度为N的01字符串中包含连续1的子串数目的问题。

#include<stdio.h>
#include<string.h>
#define MAXN 25
#define max(a,b) ((a)>(b)?(a):(b))

int N,a[MAXN],f[1<<MAXN],ans=0;

int main()
{
    scanf("%d",&N);
    for(int i=0;i<N;i++)
        scanf("%d",&a[i]);
    for(int i=0;i<N;i++)
    {
        if(a[i]==1)
        {
            int j=i;
            while(j<N&&a[j]==1) j++;
            for(int k=i;k<j;k++)
                f[1<<k]=1;
            i=j-1;
        }
    }
    for(int i=0;i<(1<<N);i++)
    {
        if(f[i])
        {
            for(int j=0;j<N;j++)
            {
                if((i>>j)&1)
                {
                    if((i>>(j+1)&1)) f[i|(1<<j)]=1;
                }
            }
        }
    }
    for(int i=0;i<(1<<N);i++)
    {
        int cnt=0;
        for(int j=0;j<N;j++)
        {
            if((i>>j)&1) cnt++;
        }
        if(f[i]) ans=max(ans,cnt);
    }
    printf("%d\n",ans);
    return 0;
}
  1. 状态压缩DP剪枝代码实现详解
    下面对代码中的各个部分进行详细解释。

(1)定义变量和常量

#define MAXN 25
#define max(a,b) ((a)>(b)?(a):(b))

int N,a[MAXN],f[1<<MAXN],ans=0;

MAXN为字符串最大长度,a数组用来存储输入的字符串,f数组用来存储状态转移的结果,ans为最终结果。

(2)读入字符串

scanf("%d",&N);
for(int i=0;i<N;i++)
    scanf("%d",&a[i]);

读入字符串长度和字符串。

(3)预处理连续1的子串

for(int i=0;i<N;i++)
{
    if(a[i]==1)
    {
        int j=i;
        while(j<N&&a[j]==1) j++;
        for(int k=i;k<j;k++)
            f[1<<k]=1;
        i=j-1;
    }
}

将连续1的子串转换为对应的状态,并将该状态的值设为1,表示该状态是合法的。

(4)状态转移

for(int i=0;i<(1<<N);i++)
{
    if(f[i])
    {
        for(int j=0;j<N;j++)
        {
            if((i>>j)&1)
            {
                if((i>>(j+1)&1)) f[i|(1<<j)]=1;
            }
        }
    }
}

对于每个合法的状态i,在该状态的基础上转移出新的合法状态。具体的转移方式是,如果该状态中存在连续的两个1,即第j位和第j+1位均为1,则将该状态i中第j+1位设为1,得到新的状态i|(1<<j),并将该状态的值设为1,表示该状态是合法的。

(5)统计结果

for(int i=0;i<(1<<N);i++)
{
    int cnt=0;
    for(int j=0;j<N;j++)
    {
        if((i>>j)&1) cnt++;
    }
    if(f[i]) ans=max(ans,cnt);
}

遍历所有状态i,统计其中二进制位为1的个数cnt,并将结果与之前的最大值ans取最大值,最终得到答案。

  1. 总结
    状态压缩DP是一种非常有效的动态规划算法,特别适用于状态数目非常庞大的问题。在实现状态压缩DP时,需要注意状态的定义、状态转移和结果统计等方面的细节,才能得到正确的结果。

在这里插入图片描述



二、C++ 状压DP剪枝 源码实现及详解

状压DP是一种常用的动态规划算法,特别适用于某些具有二进制状态的问题,比如选取一个由n个元素组成的集合的子集,用二进制的1和0来表示是否选择了某个元素。在这里,我们将详细讨论一下C++中的状压DP剪枝实现方法。

  1. 状态压缩

位运算是实现状压DP的关键,它可以将集合压缩成一个二进制数。例如,假设我们有一个集合S = {1,2,3,4},其中元素1和3被选择,那么我们可以用二进制数1010(十进制数10)来表示这个集合。

那么,一个大小为n的集合的所有子集都可以用一个n位的二进制数表示,其中第i位表示集合中第i个元素是否被选择。比如, S = { 1 , 2 , 3 } S=\{1,2,3\} S={ 1,2,3},则子集 { 1 , 2 } \{1,2\} { 1,2}可以表示为二进制数101,也就是5。

  1. 状态转移方程

DP状态转移方程和常规的DP算法类似,不过需要将状态压缩成二进制数,以方便计算。我们以背包问题为例,假设有一个容量为V的背包和n个物品,第i个物品的体积为v[i],价值为w[i]。我们可以用一个1~n的二进制数表示集合,其中第i位表示是否选择第i个物品,对于状态i,其代表的集合中物品的体积和价值可以分别表示为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值