图的m着色问题

该博客探讨了如何在无向连通图中使用m种颜色为顶点着色,确保每条边的两个顶点颜色不同。通过回溯算法进行全搜索,判断在限制颜色数量下是否存在合法的着色方案。文章介绍了算法设计思路,并分析了最坏情况的时间复杂度为O(nmn)。
摘要由CSDN通过智能技术生成

问题

给定无向连通图G和m种颜色,用这些颜色给图的顶点着色,每个

顶点一种颜色。如果要求G的每条边的两个顶点着不同颜色。给出所有可能的着色方

案;如果不存在,则回答“NO”。

解析

考虑所有的图,讨论在至多使用m种颜色的情况下,可对一给定的图着色的所有不同方法。通过回溯的方法,不断的为每一个节点着色,在前面n-1个节点都合法的着色之后,开始对第n个节点进行着色,这时候枚举可用的m个颜色,通过和第n个节点相邻的节点的颜色,来判断这个颜色是否合法,如果找到那么一种颜色使得第n个节点能够着色,那么说明m种颜色的方案是可行的。

设计

int n, k, m;//n:结点数;k:边数;m:图染色的颜色数;
int mp[MAXN][MAXN];//无向图
int color[MAXN];//结点染几号颜色
bool OK;//是否存在染色方案
bool judge(int x) //判断x结点染色方案是否正确
{
	for (int i = 1; i < x; i++
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值