极限求法总结(三)

洛必达法则

洛必达法则是解决 0 0 \frac{0}{0} 00型或 ∞ ∞ \frac{\infty}{\infty} 型极限的一种相当重要的方法. 很多原本不会做的题目,通过洛必达法则,能够很轻松地算出来. 下面介绍一下法则的使用条件和使用方法。

0 0 \frac{0}{0} 00

先介绍使用条件,有三个:
(1)被求极限的式子必须是分式 f ( x ) F ( x ) \frac{f(x)}{F(x)} F(x)f(x),而且分子分母当x → \rightarrow a(或x → \rightarrow ∞ \infty )时必须都趋向于0;
(2)在点a的某去心领域内(或当|x|充分大时),分子分母的导数都存在,当然分母的导数不能为零;
(3) lim ⁡ x → a f ′ ( x ) F ′ ( x ) \lim_{x\rightarrow a}\frac{f'(x)}{F'(x)} limxaF(x)f(x)必须存在或为无穷大;
f ( x ) F ( x ) \frac{f(x)}{F(x)} F(x)f(x)满足以上三个条件时,就有 lim ⁡ x → a f ( x ) F ( x ) \lim_{x\rightarrow a}\frac{f(x)}{F(x)} limxaF(x)f(x)= lim ⁡ x → a f ′ ( x ) F ( x ) \lim_{x\rightarrow a}\frac{f'(x)}{F(x)} limxaF(x)f(x).简单地说,如果一个极限满足上述三个条件,就可以对分子分母分别求导再求极限,比如: lim ⁡ x → 0 l n ( 1 + x ) x \lim_{x\rightarrow 0}\frac{ln(1+x)}{x} limx0xln(1+x)= lim ⁡ x → 0 1 1 + x 1 \lim_{x\rightarrow 0}\frac{\frac{1}{1+x}}{1} limx011+x1=1( 0 0 \frac{0}{0} 00型、在0的某去心邻域内导数存在、求完导后的极限存在,三个条件都满足)。
如果使用了一次洛必达法则后,还是 0 0 \frac{0}{0} 00型,依然满足三个条件,那我们就可以继续用洛必达法则,即继续求导。直到求出来为止。
例一: lim ⁡ x → 0 x − s i n x x 3 \lim_{x\rightarrow 0}\frac{x-sinx}{x^3} limx0x3xsinx= lim ⁡ x → 0 1 − c o s x 3 x 2 \lim_{x\rightarrow 0}\frac{1-cosx}{3x^2} limx03x21cosx= lim ⁡ x → 0 c o s x 6 \lim_{x\rightarrow 0}\frac{cosx}{6} limx06cosx= 1 6 \frac{1}{6} 61.
但要特别说明的是,每次使用洛必达法则,都一定要检验三个条件是否都满 足,如果有任何一个不满足而你却用了洛必达法则,那你没了.

∞ ∞ \frac{\infty}{\infty}

这跟 0 0 \frac{0}{0} 00型差不多,还是上述三种条件。当 f ( x ) F ( x ) \frac{f(x)}{F(x)} F(x)f(x)满足以上三个条件时,就有 lim ⁡ x → a f ( x ) F ( x ) \lim_{x\rightarrow a}\frac{f(x)}{F(x)} limxaF(x)f(x)= l i m x → a f ′ ( x ) F ′ ( x ) lim_{x\rightarrow a}\frac{f'(x)}{F'(x)} limxaF(x)f(x)。还是分别求导再求极限。比如 lim ⁡ x → ∞ l n x x \lim_{x\rightarrow \infty}\frac{lnx}{x} limxxlnx= l i m x → ∞ 1 x 1 lim_{x\rightarrow \infty}\frac{\frac{1}{x}}{1} limx1x1=0。
还跟前面一样,可以连续多次运用洛必达法则,但每次都一定要检查条件!如果漏掉条件,会出现这种情况: lim ⁡ x → ∞ x + s i n x x \lim_{x\rightarrow \infty}\frac{x+sinx}{x} limxxx+sinx= lim ⁡ x → ∞ 1 + c o s x 1 \lim_{x\rightarrow \infty}\frac{1+cosx}{1} limx11+cosx=1+ lim ⁡ x → ∞ c o s x \lim_{x\rightarrow \infty}cosx limxcosx=不存在。
实际上,求完导后,1+cosx在x → \rightarrow ∞ \infty 时的极限是既非 ∞ \infty 又不存在的,所以不能用洛必达法则,应该这样做 lim ⁡ x → 0 x + s i n x x \lim_{x\rightarrow 0}\frac{x+sinx}{x} limx0xx+sinx= lim ⁡ x → 0 ( 1 + s i n x x ) \lim_{x\rightarrow 0}(1+\frac{sinx}{x}) limx0(1+xsinx)=1+ lim ⁡ x → ∞ s i n x x \lim_{x\rightarrow \infty}\frac{sinx}{x} limxxsinx=1(有界比无穷趋向于0)。
实际上,对于 ∞ ∞ \frac{\infty}{\infty} 型的极限,我们可以放宽一下使用条件,不用非得“无穷比无穷”,只要是“任意比无穷”,洛必达法则都成立。也就是说,如果我们判断不出分子是不是无穷(或懒得判断,或根本不是无穷), 但能确定分母趋于无穷,那这时也是可以用洛必达法则的(即分子分母分别求导) . 不过由于这个结论不是课本上直接出现的,所以大题不能直接用,小题里面可以用. 还有一个需要注意的地方,对于数列极限是坚决不能用洛必达法则的,因为 数列不能求导!如果碰到数列极限,想用洛必达法则,可以先用 x 表示,转化成函数在x → \rightarrow + ∞ +\infty +时的极限,再在检查条件后使用洛必达法则,最后再转化回数列极限(由x → \rightarrow + ∞ +\infty +是可以直接转化成n → \rightarrow ∞ \infty 的,但n → \rightarrow ∞ \infty 不能转化成x → \rightarrow + ∞ +\infty +。)
上面说的 0 0 \frac{0}{0} 00型和 ∞ ∞ \frac{\infty}{\infty} 型的式子都叫做“未定式”,它们理论上都能用洛必达法则计算,但有些题会越算越麻烦,当你发现越求导情况越不妙,建议立即停止求导,另想别的办法。还有,如果中途发现式子能化简,或者能等价无穷小代换,一定先化简、代换。

其余类型的未定式

未定式一共有七种,上面已经说了两种。除了上面的两种 0 0 \frac{0}{0} 00型和 ∞ ∞ \frac{\infty}{\infty} 型,还有0* ∞ \infty , ∞ \infty - ∞ \infty ,00, ∞ \infty 0,1 ∞ ^\infty .做法就是向着 0 0 \frac{0}{0} 00 ∞ ∞ \frac{\infty}{\infty} 转化
对于0* ∞ \infty 型,可以把“乘以无穷”看成“除以零”,这就转化成了 0 0 \frac{0}{0} 00型;或者把“乘以零”看作“除以无穷”,这就转化成了 ∞ ∞ \frac{\infty}{\infty} 型,比如:
**例二:**求 lim ⁡ x → 0 + x l n x \lim_{x\rightarrow 0^+}xlnx limx0+xlnx(注意这里左极限没有定义,所以我们只讨论右极限)
根据洛必达法则, lim ⁡ x → 0 + x l n x \lim_{x\rightarrow 0^+}xlnx limx0+xlnx= lim ⁡ x → 0 + l n x 1 x \lim_{x\rightarrow 0^+}\frac{lnx}{\frac{1}{x}} limx0+x1lnx= lim ⁡ x → 0 + 1 x − 1 x 2 \lim_{x\rightarrow 0^+}\frac{\frac{1}{x}}{-\frac{1}{x^2}} limx0+x21x1= lim ⁡ x → 0 + ( − x ) \lim_{x\rightarrow 0^+}(-x) limx0+(x)=0.
这里我们转化成了 ∞ ∞ \frac{\infty}{\infty} 型,对于这道题,最好不要转化成 0 0 \frac{0}{0} 00型,因为那样求导比较麻烦,而且好像用一次洛必达法则做不出来,所以 0 0 \frac{0}{0} 00 ∞ ∞ \frac{\infty}{\infty} 两种类型有时是需要你选择的,不能只认一种方法。一般来说,一些简单的因式放到分母上是比较合适的。
对于 ∞ \infty - ∞ \infty 型,有一个 ∞ \infty - ∞ \infty 向着 0 0 \frac{0}{0} 00转化的通法,即
∞ \infty 1 _1 1- ∞ \infty 2 _2 2= ∞ 1 × ∞ 2 ∞ 2 \frac{\infty_1\times\infty_2}{\infty_2} 21×2 - ∞ 1 × ∞ 2 ∞ 1 \frac{\infty_1\times\infty_2}{\infty_1} 11×2=( 1 ∞ 2 \frac{1}{\infty_2} 21- 1 ∞ 1 \frac{1}{\infty_1} 11) ∞ 1 \infty_1 1* ∞ 2 \infty_2 2= 1 ∞ 2 − 1 ∞ 1 1 ∞ 1 × ∞ 2 \frac{\frac{1}{\infty_2}-\frac{1}{\infty_1}}{\frac{1}{\infty_1\times\infty_2}} 1×212111= 0 0 \frac{0}{0} 00,
但建议最好别一遇到就这么想,大脑会爆炸,在这里简单地描述一下各种常见的思考方法,主要分三种情况:(1)“分式减分式”类型的,只要通分一下,就可以转化成一个大分式,一般会是 0 0 \frac{0}{0} 00型或 ∞ ∞ \frac{\infty}{\infty} 型,然后用洛必达法则或其他方法,没有分式有时候也可以创造分式,比如把tanx看成 1 c o t x \frac{1}{cotx} cotx1;(2)“根式减根式”或“根式减有理式”,一般就是分子有理化了,这样又可以转化成一个大分式,又可以用前面的方法了;(3)“什么也不是”类型的,这种情况比较复杂,很难统一叙述,可以考虑设x= 1 t \frac{1}{t} t1,进行倒代换,整理一下又是个大分式。
**例三:**计算极限 lim ⁡ x → 0 ( 1 x 2 − 1 s i n 2 x ) \lim_{x\rightarrow 0}(\frac{1}{x^2}-\frac{1}{sin^2x}) limx0(x21sin2x1).这是 ∞ \infty - ∞ \infty 型极限,可以通分。
原极限= lim ⁡ x → 0 s i n 2 x − x 2 x 2 s i n 2 x \lim_{x\rightarrow 0}\frac{sin^2x-x^2}{x^2sin^2x} limx0x2sin2xsin2xx2= lim ⁡ x → 0 ( s i n x − x ) ( s i n x + x ) x 4 \lim_{x\rightarrow 0}\frac{(sinx-x)(sinx+x)}{x^4} limx0x4(sinxx)(sinx+x)= lim ⁡ x → 0 − 1 6 x 3 ∗ 2 x x 4 \lim_{x\rightarrow 0}\frac{-\frac{1}{6}x^3*2x}{x^4} limx0x461x32x=- 1 3 \frac{1}{3} 31.
剩下三个00, ∞ \infty 0, 1 ∞ 1^\infty 1一起说,它们有一个共同的特点——都是幂指函数. 在求幂指函数的极限的时候,一般有两种思路:第一种思路是利用一个重要极限 lim ⁡ x → ∞ ( 1 + 1 x ) x \lim_{x\rightarrow \infty}(1+\frac{1}{x})^x limx(1+x1)x=e,这一般是针对 1 ∞ 1^\infty 1这种类型的;第二种类型对00, ∞ \infty 0 , 1 ∞ 1^\infty 1这三种类型都奏效,通过恒等式N=elnN这个恒等式,我们总可以把这三种类型转化为 0 0 \frac{0}{0} 00型或 ∞ ∞ \frac{\infty}{\infty} 型。
总之,只需要进行这样的操作: lim ⁡ u v \lim_{}u^v limuv= lim ⁡ e l n u v \lim{e^{lnu^v}} limelnuv =e^ lim ⁡ v l n u \lim{vlnu} limvlnu,问题就变得明朗了。下面分别举一个例子:
例四: 00型: lim ⁡ x → 0 + x x \lim_{x\rightarrow 0^+}x^x limx0+xx= lim ⁡ x → 0 + e l n x x \lim_{x\rightarrow 0^+}{e^{lnx^x}} limx0+elnxx= lim ⁡ x → 0 + e x l n x \lim_{x\rightarrow 0^+}{e^{xlnx}} limx0+exlnx=e0=1.其中的 lim ⁡ x → 0 + x l n x \lim_{x\rightarrow 0^+}{xlnx} limx0+xlnx刚才讲0 * ∞ \infty 型的时候已经算出来了。
例五: ∞ \infty 0型: lim ⁡ x → + ∞ ( 1 + x ) 1 x \lim_{x\rightarrow+\infty}{(1+x)^\frac{1}{x}} limx+(1+x)x1= lim ⁡ x → + ∞ e l n ( 1 + x ) 1 x \lim_{x\rightarrow+\infty}{e^{ln(1+x)^\frac{1}{x}}} limx+eln(1+x)x1= lim ⁡ x → + ∞ e 1 x l n ( 1 + x ) \lim_{x\rightarrow+\infty}{e^{\frac{1}{x}{ln(1+x)}}} limx+ex1ln(1+x)=e^ lim ⁡ x → + ∞ l n ( 1 + x ) x \lim_{x\rightarrow+\infty}\frac{ln(1+x)}{x} limx+xln(1+x)=e ^ lim ⁡ x → + ∞ 1 1 + x 1 \lim_{x\rightarrow+\infty}\frac{\frac{1}{1+x}}{1} limx+11+x1=e 0=1.
这个极限跟第二个重要极限的推论 lim ⁡ x → 0 ( 1 + x ) 1 x \lim_{x\rightarrow 0}{(1+x)^\frac{1}{x}} limx0(1+x)x1=e有点像,就是x的趋向方式不一样,注意不要弄混。这个解题过程是把 ∞ \infty 0型变成了 ∞ ∞ \frac{\infty}{\infty} 型。
例六: 1 ∞ ^\infty 型:
lim ⁡ x → 0 ( x + e x ) 1 x \lim_{x\rightarrow 0}{(x+e^x)^\frac{1}{x}} limx0(x+ex)x1= lim ⁡ x → 0 e 1 x l n ( x + e x ) \lim_{x\rightarrow 0}{e^{\frac{1}{x}{ln(x+e^x)}}} limx0ex1ln(x+ex)= e lim ⁡ x → 0 l n ( x + e x ) x e^{\lim_{x\rightarrow 0}\frac{ln(x+e^x)}{x}} elimx0xln(x+ex)= e lim ⁡ x → 0 ( 1 + e x ) 1 x + e x 1 e^{\lim_{x\rightarrow 0}\frac{(1+e^x)\frac{1}{x+e^x}}{1}} elimx01(1+ex)x+ex1=e2.这里是把1 ∞ ^\infty 型变形成了 0 0 \frac{0}{0} 00型。
至此以上七种未定式已经全部总结完毕,理论上都是可以转化成 0 0 \frac{0}{0} 00型或 ∞ ∞ \frac{\infty}{\infty} 型进而应用洛必达法则的,一定要灵活运用,不过不要寄全部的希望于其上,有时候洛必达法则的优越感十足,但也有时候它比任何一种方法都麻烦。。。

  • 2
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值