极限求法总结(二)

利用定义证明

利用定义证明一个极限等式成立,首先要知道这个极限等于几. 有时你不知 道极限等于几,也可以通过直觉或归纳或其他方法猜出它等于几,再证明。证明之前,首先要熟谙关于极限的全部定义,前面都有。
接下来说明一下怎么证明一个极限等式成立。我以数列极限为例说明一下吧,其实函数极限也类似,精髓都在于:在任取 ξ \xi ξ>后,只要找到一个N或者X或者 ξ \xi ξ满足定义条件,就能说明原极限等式成立。
例一:证明 lim ⁡ n → + ∞ \lim_{n\rightarrow+\infty} limn+ (2n2+3)/(n2+2n) =2.
证明:任取 ξ \xi ξ>0,要使得|(2n2+3)/(n2+2n) -2|< ξ \xi ξ成立,即|(4n-3)/(n2+2n)|(这里可以适当放大)<4n/n2=4/n< ξ \xi ξ成立,只需n>4/ ξ \xi ξ即可。取N=[4/ ξ \xi ξ],则当n>N时,恒有|(2n2+3)/(n2+2n) -2|<4/n< ξ \xi ξ成立,所以原极限 lim ⁡ n → + ∞ \lim_{n\rightarrow+\infty} limn+(2n2+3)/(n2+2n)=2成立。
在以上的解题中,我对|(4n-3)/n2+2n)|放大了一下,这是没问题的,4n/n2< ξ \xi ξ都成立了,|(4n-3)/(n2+2n)|< ξ \xi ξ更成立了,而且这便于我们反解出n,事实上,如果不放大,要解出n是十分困难的,但理论上也不是不能解。这也说明了一个观点,正整数N是不唯一的,只要找到那么一个正整数N即可,不同的人找的可能是不同的,只要逻辑正确即可。

函数的直接代入法

能直接把趋向点代入函数的这种极限最简单了,代个数就出来了. 什么样的极限,可以往里代?答案是:在那一点处连续的函数的极限,可以代. 因为连续有个定义是“极限等于函数值”,所以连续函数在某点的极限,一 定等于连续函数在该点的函数值. 我们还有一个结论,初等函数在其定义区间内都是连续的. 所以只要是初等函数(很多分段函数不是初等函数),而且在某点处有定义,那如果想求这点处的极限,直接代就行了. 当我们做题进行到某一步时,如果发现条件满足,能够直接代入,那么就可以直接代入得到答案了,千万不要继续求下去了(尤其是洛必达法则的题目,如果继续求的话,结果一定是错的). 这里不举例题了吧,毕竟不难. 关于“连续”,还有一件事情应当注意,极限符号与连续函数是可以交换的,如 lim ⁡ x → 0 f ( s i n x ) \lim_{x\rightarrow 0}f(sinx) limx0f(sinx)=f( lim ⁡ x → 0 s i n x \lim_{x\rightarrow 0}sinx limx0sinx),其中函数f(u)连续。

通过计算单侧极限求分段函数极限

这种方法是针对分段函数极限而言的,而且题目一般会让你求分段函数在分 界点处的极限. 做法就是先求左极限,再求右极限. 如果都存在且相等,那答案 就是这个数了;如果左右极限有至少一个不存在,或者都存在但不相等,那这个原极限就不存在了. 需要注意的是,求左极限的时候,用的就是小于分界点时的解析式,并想象 x 略小于分界点的情况;求右极限的时候,用的就是大于分界点时的解析式,并想象 x 刚过分界点的情况;跟分界点处的函数值半毛钱关系都没有. 举一个例题:
例二: 已知函数 f ( x ) = { x s i n 1 / x x>0 ( a + x 2 ) x<=0 f(x)= \begin{cases} xsin1/x& \text{x>0}\\ (a+x^2)& \text{x<=0} \end{cases} f(x)={xsin1/x(a+x2)x>0x<=0在x=0处极限存在,求a的值。
先求左极限 lim ⁡ x → 0 − f ( x ) \lim_{x\rightarrow 0^-}f(x) limx0f(x).当x略小于0时,用的是f(x)=a+x2这个解析式,它趋近于a。再求右极限 lim ⁡ x → 0 + f ( x ) \lim_{x\rightarrow 0^+}f(x) limx0+f(x),当略大于0时,用的是f(x)=xsin1/x这个解析式,无穷小乘以有界函数,趋于0.
为了让这个极限存在,只需要左右极限相等即可,所以a=0,此时极限 lim ⁡ x → 0 f ( x ) \lim_{x\rightarrow 0}f(x) limx0f(x)就等于0.
这种题型一般不会太难,谨慎地分析左右极限都等于谁,就不会做错. 还有一种情况,含有指数函数、反正切函数、反余切函数、取整函数(不超 过某实数的最大整数)等函数的极限可能也要分左右极限去考虑,因为它们在正 负无穷处、或者某点左右的极限是完全不同的。
例三: 计算 lim ⁡ x → 0 e 1 / x \lim_{x\rightarrow 0}e^1/x limx0e1/x.
由于当x → \rightarrow 0+时,1/x趋于正无穷;当x → \rightarrow 0-时,1/x趋向于负无穷,而正负无穷对于指数函数而言是完全不同的,因此必须分左右极限讨论。
由于 lim ⁡ x → 0 + e 1 / x \lim_{x\rightarrow 0^+}e^1/x limx0+e1/x=+ ∞ \infty ,而 lim ⁡ x → 0 − e 1 / x \lim_{x\rightarrow 0^-}e^1/x limx0e1/x=0,因此 lim ⁡ x → 0 e 1 / x \lim_{x\rightarrow 0}e^1/x limx0e1/x不存在。
例四:计算 lim ⁡ x → 0 [ x ] \lim_{x\rightarrow 0}[x] limx0[x],其中[x]为取整函数 。
由于 lim ⁡ x → 0 + [ x ] \lim_{x\rightarrow 0^+}[x] limx0+[x]=0, lim ⁡ x → 0 − [ x ] \lim_{x\rightarrow 0^-}[x] limx0[x]=-1,它们不相等,因此 lim ⁡ x → 0 [ x ] \lim_{x\rightarrow 0}[x] limx0[x]不存在。

  • 5
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值