极限求法总结(四)

两个重要极限

lim ⁡ x → 0 s i n x x \lim_{x\rightarrow 0}\frac{sinx}{x} limx0xsinx=1

这个极限的重要框架是: lim ⁡ x → [ ] s i n [ ] [ ] \lim_{x\rightarrow [ ]}\frac{sin[ ]}{[ ]} limx[][]sin[]=1,只要两个[]里的形式完全一致,并且x的趋向方式能使两个[]都趋向于零,那这个极限就等于1.在课本上,这个
极限是用夹逼准则证明的,这也是最佳的证明方法. 我们最好不要用洛必达法则, 因为在使用洛必达法则时,会遇到sin x 的求导问题,我们现在当然知道sin x 的 导数是cosx,但是事实上(sinx)’=cosx正是利用这第一个重要极限证明的. 所 以一旦用洛必达法则证明了第一个重要极限,会产生循环论证的问题.
当我们遇到有关三角函数的极限时,要善于往这个重要极限身上考虑,毕竟 这个重要极限就是关于三角函数的嘛. 因为这个重要极限中只有正弦,所以当遇到切函数(正切余切)和割函数(正割余割)的时候,要尝试一下能不能通过“切割化弦”,即利用"tanx= s i n x c o s x \frac{sinx}{cosx} cosxsinx,cotx= c o s x s i n x \frac{cosx}{sinx} sinxcosx,secx= 1 c o s x \frac{1}{cosx} cosx1,cscx= 1 s i n x \frac{1}{sinx} sinx1"来解决问题。而对于余弦,则可以考虑用二倍角公式的变形cosx=1-2sin2 x 2 \frac{x}{2} 2x来换走它。当然,我们也不能不管三七二十一地一换了之,有些本不必换走就能做出来的, 如果强行换走,会南辕北辙. 所以你的变形一定要有目的地进行,不能乱变一通.
例一: lim ⁡ x → 0 1 x \lim_{x\rightarrow 0}\frac{1}{x} limx0x1( 1 s i n x \frac{1}{sinx} sinx1- 1 t a n x \frac{1}{tanx} tanx1)= lim ⁡ x → 0 1 x \lim_{x\rightarrow 0}\frac{1}{x} limx0x1( 1 s i n x \frac{1}{sinx} sinx1- c o s x s i n x \frac{cosx}{sinx} sinxcosx)= lim ⁡ x → 0 1 − c o s x x s i n x \lim_{x\rightarrow 0}\frac{1-cosx}{xsinx} limx0xsinx1cosx= lim ⁡ x → 0 2 s i n 2 x 2 2 x s i n x 2 c o s x 2 \lim_{x\rightarrow 0}\frac{2sin^2\frac{x}{2}}{2xsin\frac{x}{2}cos\frac{x}{2}} limx02xsin2xcos2x2sin22x= lim ⁡ x → 0 s i n x 2 x c o s x 2 \lim_{x\rightarrow 0}\frac{sin\frac{x}{2}}{xcos\frac{x}{2}} limx0xcos2xsin2x= lim ⁡ x → 0 s i n x 2 x 2 \lim_{x\rightarrow 0}\frac{sin\frac{x}{2}}{\frac{x}{2}} limx02xsin2x 1 2 c o s x 2 \frac{1}{2cos\frac{x}{2}} 2cos2x1= 1 2 \frac{1}{2} 21.
还有一个值得注意的例题,极限 lim ⁡ x → 0 s i n ( x s i n 1 x ) x s i n 1 x \lim_{x\rightarrow 0}\frac{sin(xsin\frac{1}{x})}{xsin\frac{1}{x}} limx0xsinx1sin(xsinx1)是不是等于1呢?它看起来确实非常符合上述框架,但它也确实不等于1.在极限求法总结(一)就已经指出函数在x → \rightarrow x 0 _0 0时的极限的 ξ \xi ξ- δ \delta δ定义,第一句话是“设函数f(x)在点x 0 _0 0的某一去心领域内有定义”,而对于那些去心领域内没有定义的函数,是不能讨论极限的。这个极限 lim ⁡ x → 0 s i n ( x s i n 1 x ) x s i n 1 x \lim_{x\rightarrow 0}\frac{sin(xsin\frac{1}{x})}{xsin\frac{1}{x}} limx0xsinx1sin(xsinx1)的分母上有一个sin 1 x \frac{1}{x} x1,在x → \rightarrow 0时能够频繁的取到零值,而且越趋向于0,sin 1 x \frac{1}{x} x1越频繁地等于0, s i n ( x s i n 1 x ) x s i n 1 x \frac{sin(xsin\frac{1}{x})}{xsin\frac{1}{x}} xsinx1sin(xsinx1)越频繁地无意义,在x=0的任何一个去心领域内都无法保证一直有意义。所以从根本上说,这个所谓“极限”是不符合函数极限定义的,更不用提它的计算方法了,因此 lim ⁡ x → 0 s i n ( x s i n 1 x ) x s i n 1 x \lim_{x\rightarrow 0}\frac{sin(xsin\frac{1}{x})}{xsin\frac{1}{x}} limx0xsinx1sin(xsinx1)不存在。

lim ⁡ x → ∞ ( 1 + 1 x ) x \lim_{x\rightarrow \infty}(1+\frac{1}{x})^x limx(1+x1)x=e或者 lim ⁡ x → 0 ( 1 + x ) 1 x \lim_{x\rightarrow 0}(1+x)^\frac{1}{x} limx0(1+x)x1=e

这个重要极限的框架是 lim ⁡ x → [ ] ( 1 + 1 [ ] ) [ ] \lim_{x\rightarrow [ ]}(1+\frac{1}{[ ]})^{[ ]} limx[](1+[]1)[]=e.只要[]里的形式完全一致,并且x的趋向方式能使得两个[]都趋于无穷,那这个极限就等于e。
当我们看到指数上含有 x 的时候,要善于往这个重要极限身上想. 不过有时候这个指数是“隐形”的,比如 lim ⁡ x → 0 l n ( 1 + x ) x \lim_{x\rightarrow 0}\frac{ln(1+x)}{x} limx0xln(1+x).这的确没有指数,但是我们通过对数的运算性质,就能变出指数: lim ⁡ x → 0 l n ( 1 + x ) x \lim_{x\rightarrow 0}\frac{ln(1+x)}{x} limx0xln(1+x)= lim ⁡ x → 0 1 x \lim_{x\rightarrow 0}\frac{1}{x} limx0x1ln(1+x)= lim ⁡ x → 0 l n ( 1 + x ) 1 x \lim_{x\rightarrow 0}ln(1+x)^\frac{1}{x} limx0ln(1+x)x1=lne=1.有时候对数
真的挺神奇的~(这道题可不可以用等价无穷小呢?对这道题而言,最好不要,因为既然让你做这道题,应该 出题者的意思是让你证明它俩是等价无穷小. 你都不知道这个极限是 1,怎么知 道它俩是等价无穷小呢?)
还有的时候,括号里面并不是1+ 1 [ ] \frac{1}{[ ]} []1的形式,这就需要我们凑出来。怎么凑呢?首先,如果没分离常数,就先分离常数. 分离完常数以后,把分离剩下的那个分式取个倒数放在分母上,应该就是一个1+ 1 [ ] \frac{1}{[ ]} []1的形式(一般你分出的常数都是1)。比如 x − 2 x + 3 \frac{x-2}{x+3} x+3x2= x + 3 − 5 x + 3 \frac{x+3-5}{x+3} x+3x+35=1- 5 x + 3 \frac{5}{x+3} x+35=1+ 1 − x + 3 5 \frac{1}{-\frac{x+3}{5}} 5x+31.
接下来处理指数. 首先要把指数变成跟刚才分母上一样的形式,然后再看看 与原本的指数相比有什么变化,多加了再减掉,多乘了再除掉. 比如:
例二: lim ⁡ x → ∞ ( x − 2 x + 3 ) x \lim_{x\rightarrow \infty}(\frac{x-2}{x+3})^x limx(x+3x2)x,通过刚才的分离常数我们变形成了 lim ⁡ x → ∞ ( 1 + 1 − x + 3 5 ) x \lim_{x\rightarrow \infty}(1+\frac{1}{-\frac{x+3}{5}})^x limx(1+5x+31)x.所以我们先暂时写成 lim ⁡ x → ∞ ( 1 + 1 − x + 3 5 ) − x + 3 5 \lim_{x\rightarrow \infty}(1+\frac{1}{-\frac{x+3}{5}})^-\frac{x+3}{5} limx(1+5x+31)5x+3,再跟x作比较,发现这个指数比x多加了3,多除以了-5.所以倒回去就应该是
lim ⁡ x → ∞ ( 1 + 1 − x + 3 5 ) x \lim_{x\rightarrow \infty}(1+\frac{1}{-\frac{x+3}{5}})^x limx(1+5x+31)x= lim ⁡ x → ∞ ( 1 + 1 − x + 3 5 ) \lim_{x\rightarrow \infty}(1+\frac{1}{-\frac{x+3}{5}}) limx(1+5x+31)^ − x + 3 5 × ( − 5 ) − 3 -\frac{x+3}{5}\times(-5)-3 5x+3×(5)3
接下来就很容易得到答案e(-5)
一般地,我们有 lim ⁡ x → ∞ ( m x + b m x + a ) c x + d \lim_{x\rightarrow \infty}(\frac{mx+b}{mx+a})^{cx+d} limx(mx+amx+b)cx+d= e ( b − a ) c m e^\frac{(b-a)c}{m} em(ba)c.证明方法就是把上面的过程走一遍。有了这个,我们就瞬间知道 lim ⁡ x → ∞ ( x + 100 x + 10 ) 50 x − 1000 \lim_{x\rightarrow \infty}(\frac{x+100}{x+10})^{50x-1000} limx(x+10x+100)50x1000=e4500.
还有一件神奇的事情是,通过结论能看出,指数上的d对这个 极限值并没有影响。
以上两个重要极限,是解决很多极限问题的钥匙,有太多题目都可以转化成 这两种题型,可以灵活运用。

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值