在自然语言处理(NLP)领域,文本分类是一项非常重要的任务,它可以帮助我们将大量的文本数据自动归类到不同的类别中。传统的文本分类方法有很多,而近年来,利用大模型进行文本分类逐渐成为一种流行且高效的方式。本文将介绍如何使用 Python 编写代码,结合 DeepSeek API 实现文本分类的功能,并探讨使用大模型方法进行文本分类与其他方法的区别。
1 代码概述
我们的代码主要实现了以下几个功能:
创建一个DeepSeek类,用于与 DeepSeek API 进行交互,获取文本的回复。
定义一个classifier函数,用于生成分类提示并调用DeepSeek类的方法进行文本分类。
在main函数中,读取 JSON 文件中的文本数据,对每个文本进行分类,并将结果写入 JSONL 文件。
2 代码详细分析
2.1 导入必要的库
import json
import traceback
from openai import OpenAI
from string import Template
import traceback
import pandas as pd
from tqdm import tqdm
这里导入了一些常用的 Python 库,包括处理 JSON 数据的json库、异常处理的traceback库、与 OpenAI API 兼容的OpenAI库、字符串模板处理的Template类、数据处理的pandas库以及进度条显示的tqdm库。
2.2 DeepSeek类
class DeepSeek():
def __init__(self):
self.client = OpenAI(api_key="sk-******", base_url="https://api.deepseek.com")
self.model = 'deepseek-chat'
def complete(self, query):
messages=[
{
"role":