基于Python 和 DeepSeek API 实现文本分类

在自然语言处理(NLP)领域,文本分类是一项非常重要的任务,它可以帮助我们将大量的文本数据自动归类到不同的类别中。传统的文本分类方法有很多,而近年来,利用大模型进行文本分类逐渐成为一种流行且高效的方式。本文将介绍如何使用 Python 编写代码,结合 DeepSeek API 实现文本分类的功能,并探讨使用大模型方法进行文本分类与其他方法的区别。

1 代码概述

我们的代码主要实现了以下几个功能:
创建一个DeepSeek类,用于与 DeepSeek API 进行交互,获取文本的回复。
定义一个classifier函数,用于生成分类提示并调用DeepSeek类的方法进行文本分类。
在main函数中,读取 JSON 文件中的文本数据,对每个文本进行分类,并将结果写入 JSONL 文件。

2 代码详细分析

2.1 导入必要的库

import json
import traceback
from openai import OpenAI
from string import Template
import traceback
import pandas as pd
from tqdm import tqdm

这里导入了一些常用的 Python 库,包括处理 JSON 数据的json库、异常处理的traceback库、与 OpenAI API 兼容的OpenAI库、字符串模板处理的Template类、数据处理的pandas库以及进度条显示的tqdm库。

2.2 DeepSeek类

class DeepSeek():
    def __init__(self):
        self.client = OpenAI(api_key="sk-******", base_url="https://api.deepseek.com")
        self.model = 'deepseek-chat'

    def complete(self, query):
        messages=[
            {
   "role": 
### 使用 Python DeepSeek 大模型进行文本内容仿写 为了利用 DeepSeek 大模型在 Python实现文本内容仿写,通常需要通过 API 调用来完成。下面提供了一个具体的实例来展示这一过程。 #### 准备工作 确保已经安装了必要的依赖库 `requests` 或者其他用于 HTTP 请求的库。如果尚未安装,则可以通过 pip 安装: ```bash pip install requests ``` #### 设置环境变量 按照说明文档中的指引,在本地环境中配置好访问所需的 API Key,并确认选择了 deepseek-chat 模型作为服务端使用的模型版本[^2]。 #### 编写请求函数 创建一个简单的 Python 函数来进行 API 请求,该函数接收待处理的输入文本以及期望生成的内容长度参数。 ```python import os import requests def generate_text(prompt, max_tokens=100): url = "https://api.deepseek.com/v1/completions" headers = { 'Content-Type': 'application/json', 'Authorization': f'Bearer {os.getenv("DEEPSEEK_API_KEY")}' } data = { "model": "deepseek-chat", "prompt": prompt, "max_tokens": max_tokens } response = requests.post(url, json=data, headers=headers) if response.status_code == 200: result = response.json() return result['choices'][0]['text'].strip() else: raise Exception(f"Error: {response.text}") ``` 此段代码定义了一个名为 `generate_text` 的函数,其功能是从给定提示(`prompt`)出发,向指定 URL 发送 POST 请求以获取由大模型产生的新文本片段。这里假设服务器返回的数据结构遵循标准 OpenAI API 响应格式。 #### 应用场景示例 现在有了上述工具之后,就可以轻松地尝试不同的输入来观察输出效果了。比如想要模仿某位作者风格写作一段话,只需将原文本传递给 `generate_text()` 即可得到相似但不完全相同的延续文字。 ```python if __name__ == "__main__": original_text = "在美国的生活经历让我学到了很多东西..." generated_text = generate_text(original_text, max_tokens=50) print("原始文本:", original_text) print("\n生成文本:", generated_text) ``` 这段脚本展示了如何调用之前定义好的 `generate_text` 方法,并打印出原句及其对应的机器创作续作。注意这里的 `original_text` 可以替换为你希望模拟的具体语料。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

修破立生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值