DeepSeek大模型微调实战(理论篇)

DeepSeek模型微调(理论篇)

img

1. 简介

在大模型的微调过程中,**LoRA(低秩适配)**参数设置是提升训练效率和性能的关键。通过减少需更新的参数量,LoRA能够在维持模型性能的同时显著降低计算成本。

然而,LoRA并非唯一影响训练效果的因素。诸如学习率批次大小以及优化器(如AdamW)等参数同样在微调过程中起着至关重要的作用。

学习率决定了模型每次更新的幅度,批次大小则影响了每次训练中样本的处理量,而优化器则确保模型参数的平稳更新。了解并灵活调整这些训练参数,不仅能帮助你在微调过程中得心应手,更能快速提升训练效果。

本文将通过使用多轮对话数据集进行微调实验,帮助你深入了解微调的核心原理,并提供一套完整的操作指南。

在本教程中,你将学习到:

  1. 如何进行LoRA参数的设置,并掌握在不同任务中的应用。
  2. 训练过程中如何合理调整学习率、批次大小等关键参数,以优化模型性能。
  3. 多轮对话数据集的微调方法和原理,为你提供实践的基础。

本实验基于transformersopenMind均已实现本次微调,代码均可在github链接上查看。

通过本次实验,你不仅能够完成多轮对话数据的微调,还能掌握这些方法,并将其迁移到其他微调实验中,独立进行高效的模型调优。

2. 链接资料

数据集:https://github.com/SmartFlowAI/EmoLLM/blob/main/datasets/data_pro.json

模型地址:https://www.modelscope.cn/models/deepseek-ai/deepseek-llm-7b-chat

代码地址:

https://github.com/828Tina/deepseek-llm-7B-chat-lora-ft

可视化工具SwanLab项目地址:

https://swanlab.cn/@LiXinYu/deepseek-llm-7b-chat-finetune/overview

友情链接-魔乐社区:https://modelers.cn/

img

3. 多轮对话数据构建

多轮对话微调其实和单轮对话(或者说指令数据)差不多,在我看来其实类似于多个指令数据的组合,单轮对话数据处理的时候只需要处理输入和输出即可,训练的时候输入置为-100,输出不变,而多轮对话微调数据集以及标签

3.1 训练不充分

第一种方法是,只把最后一轮机器人的回复作为要学习的标签,其它地方作为语言模型概率预测的condition,无需学习,赋值为-100,忽略这些地方的loss。

img

在这里插入图片描述

这种方法由于没有对中间轮次机器人回复的信息进行学习,因此存在着严重的信息丢失,是非常不可取的。

3.2 训练不高效

第二种方法是,把一个多轮对话拆解,构造成多条样本,以便对机器人的每轮回复都能学习。

img

在这里插入图片描述

这种方法充分地利用了所有机器人的回复信息,但是非常低效,模型会有大量的重复计算。

3.3 合适的数据组合方式

第三种方法是,直接构造包括多轮对话中所有机器人回复内容的标签,充分地利用了所有机器人的回复信息,同时也不存在拆重复计算,非常高效。目前大部分微调框架用的都是这个组合方式。

img

在这里插入图片描述

我们为什么可以直接构造多轮对话样本?难道将第二轮和第三轮对话内容加入 inputs 中不会干扰模型对第一轮对话的学习吗?

答案是:不会。原因在于,作为一种语言模型,LLM(大语言模型)采用的是基于注意力机制的结构,其中的自注意力机制(Self-Attention) 在处理输入时,具有天然的局部性约束。具体来说,LLM 在处理每一个输入时,使用掩码注意力(Masked Attention)来确保每个位置的预测只依赖于前面已经生成的内容,而不会提前“看到”后续的对话轮次。

也就是说,尽管输入数据中包含了多轮对话的信息,模型在进行每一轮对话的生成时,仅会关注当前回合的上下文,而不受后续轮次内容的影响。这样,第一轮的对话内容与后续轮次的对话并不会相互干扰,从而保持了学习的纯粹性。通过这种机制,模型能够有效地在多轮对话的框架下进行训练,同时保证每轮对话的独立性和准确性。

简而言之,LLM 能够通过其掩码机制在多轮对话中进行“局部”学习,每次生成的内容都仅与当前上下文相关,而不会受到其他轮次的干扰。

img

4. 各实验参数原理

4.1 lora参数

LoRA(Low-Rank Adaptation)是一种针对大型语言模型的微调技术,旨在降低微调过程中的计算和内存需求。其核心思想是通过引入低秩矩阵来近似原始模型的全秩矩阵,从而减少参数数量和计算复杂度。

在LoRA中,原始模型的全秩矩阵被分解为低秩矩阵的乘积。具体来说,对于一个全秩矩阵W,LoRA将其分解为两个低秩矩阵A和B的乘积,即W ≈ A * B。其中,A和B的秩远小于W的秩,从而显著减少了参数数量。

img

上图为 LoRA 的实现原理,其实现流程为:

  1. 在原始预训练语言模型旁边增加一个旁路,做降维再升维的操作来模拟内在秩;
  2. 用随机高斯分布初始化 A,用零矩阵初始化B,训练时固定预训练模型的参数,只训练矩阵 A 与矩阵 B ;
  3. 训练完成后,将 B 矩阵与 A 矩阵相乘后合并预训练模型参数作为微调后的模型参数。

公式表示为:

𝑊′=𝑊+Δ𝑊=𝑊′+𝐴⋅𝐵

其中,W是原始的权重矩阵,A是一个尺寸为dr的矩阵,B是一个尺寸为rd’的矩阵,r是低秩矩阵的秩。通过这种分解,原始矩阵W的更新仅由A和B的乘积决定。进一步地,LoRA引入了一个缩放因子α,使得更新公式为:

𝑊′=𝑊+𝛼𝑟𝐴⋅𝐵

那么在实际使用的时候,我们如何确定lora参数?这些参数的变化对实验结果产生什么影响?模型具体哪些部分参数需要使用lora?等等这些问题,我们应该如何应对?下面我将详细介绍。

LoraConfig各个参数设置

peft(Parameter-Efficient Fine-Tuning)库是一个用于高效微调大规模预训练模型的工具,旨在减少训练时的计算和存储成本,同时保持模型性能。它通过引入LoRA、Adapter等技术,使得只需调整部分参数即可实现有效的微调。LoraConfig是peft库中的一个配置类,用于设置LoRA相关的超参数,如低秩矩阵的秩、缩放因子等,它帮助用户定制LoRA微调的细节,优化训练过程的效率和效果。

在这里插入图片描述

target_modules

target_modules是 LoRA(Low-Rank Adaptation)中的关键参数,用于指定模型中需要插入低秩矩阵调整的模块。LoRA 的核心思想是通过对预训练模型中的特定层进行低秩矩阵插入,实现参数高效微调而无需修改原始权重。对于语言模型,通常选择影响权重更新较大的模块,例如q_proj和k_proj(负责查询和键的变换),v_proj(值的变换),以及o_proj(输出投影)等。这些模块主要集中在自注意力和前馈网络中,通过插入的低秩矩阵调整这些模块的权重,使模型在保持原始能力的同时适应新任务,极大减少微调的计算和存储开销。

具体如下,我们使用deepseek观察模型每一层具体都是什么:

在这里插入图片描述

具体模型结构如下:

在这里插入图片描述

可以看到deepseek模型也是采取的Llama模型结构,那么具体哪些层会参与lora微调呢?下面将详细介绍

1. Attention层

  • Self-attention层: 这些层通常对模型性能影响较大。LoRA会被应用于自注意力的查询(q_proj)、键(k_proj)、值(v_proj)和输出(o_proj)投影矩阵。这些矩阵包含了大量的可训练参数,因此是LoRA微调的理想目标。

  • LlamaSdpaAttention中的矩阵

    • q_proj: 查询投影
    • k_proj: 键投影
    • v_proj: 值投影
    • o_proj: 输出投影
    • Rotary Embedding: 虽然在一些实现中会对嵌入进行微调,但通常LoRA不会直接用于rotary_emb,因为它通常是固定的。

2. MLP层 - MLP层中的Gate、Up和Down投影

  • gate_proj:控制门投影
  • up_proj:上升投影
  • down_proj:下降投影

MLP层的Gate、Up和Down投影通常涉及大量的可训练参数,因此对这些投影进行LoRA微调,可以在不显著增加计算负担的情况下优化模型表现。

通过低秩适应,LoRA能够在减少参数量的同时,增强模型对复杂模式的适应能力。这些曾在处理非线性变换时起到重要作用,通常也是LoRA微调的目标。

3. LayerNorm层

  • RMSNorm: 在Llama中使用的是LlamaRMSNorm(Root Mean Square Layer Normalization),它与标准的LayerNorm不同,但也可以通过LoRA微调。虽然这部分常常不会进行微调,但如果需要微调,通常会集中在注意力层和MLP层上。

4.Embedding层

  • embed_tokens:如果对词嵌入有需要进行微调,LoRA也可以应用于嵌入矩阵。尤其在词汇量较大的情况下,嵌入矩阵的参数量非常庞大,这样进行LoRA微调也可以获得一定的性能提升。

5. 线性层(lm_head)

  • lm_head:在模型输出时,lm_head是从隐藏层到词汇表的最后一层线性转换。通常,LoRA不会直接应用于输出层,但在某些微调场景下,可以将LoRA应用于该层以调整模型输出。

总结:
一般来说,LoRA微调会集中在以下层:
Attention层的查询、键、值和输出投影(q_proj, k_proj, v_proj, o_proj)
MLP层的gate_proj、up_proj和down_proj
可能在某些场景下微调embed_tokens和lm_head

通过这种方式,LoRA能够有效减少参数量和计算成本,同时保持微调的效果。

r、alpha、dropout

在模型微调的过程中,r、alpha和dropout是常见的超参数,用于优化模型训练和提升其泛化能力。

  • r:通常用于LoRA(Low-Rank Adaptation)方法中,表示低秩矩阵的秩值。r决定了微调时使用的低秩矩阵的维度,较小的r可以减少参数数量,从而提高训练效率,但可能牺牲一定的模型表现。较小的r(例如 8-32)适用于较小模型或需要较低资源的情况,而较大的r(例如 64-128)适用于更大规模的模型。

  • alpha:是LoRA中的一个超参数,用来控制低秩矩阵的缩放因子。通过调整alpha,可以平衡低秩矩阵的影响,使模型能够在微调过程中保持足够的表达能力。16-32 是比较常见的选择,较大的alpha值通常会增加模型的表达能力,但也可能增加训练难度。

  • Dropout:是一种正则化技术,通过在训练过程中随机丢弃神经网络中的部分神经元来防止过拟合。dropout率控制丢弃的概率,较高的dropout率有助于减少模型的复杂度,从而提升其在新数据上的泛化能力。对于大多数任务,0.2-0.3 是比较常见的取值,较低的dropout值(如 0.1)适合于较小的模型,而较高的dropout值(如 0.4-0.5)适合于较大的网络,尤其是在防止过拟合时。

总结:

r:通常选择 8-128,根据任务和模型规模调整。
alpha:常见值在 16-64,推荐 16-32。
Dropout:常见值在 0.1-0.5,推荐 0.2-0.3。

task_type

在LoraConfig中的task_type是一个指定模型任务类型的参数,它帮助LoRA配置不同的微调策略,以适应特定的任务需求。task_type可以有多个选项,通常包括以下几种类型:

1、CAUSAL_LM

自回归语言建模任务,模型基于输入的部分文本(上下文)来预测下一个词,适用于生成任务,如文本生成和语言建模。

2、SEQ_CLS

文本分类任务,模型将整个输入文本分类到某个类别。常见的应用包括情感分析、垃圾邮件检测、新闻分类等。

3、SEQ_2_SEQ_LM

序列到序列的语言建模任务。该任务类型处理输入序列并生成一个输出序列。通常用于机器翻译、文本摘要等任务。

4、TOKEN_CLS

标记分类任务,模型为输入文本的每个标记(通常是词或子词)分配一个类别标签。常见应用包括命名实体识别(NER)、词性标注(POS)、依存句法分析等。

5、QUESTION_ANS

问答任务,模型根据输入的问题和上下文,提取答案。常见应用包括阅读理解、基于文档的问答等。

6、FEATURE_EXTRACTION

特征提取任务,模型提取输入数据的隐藏状态(通常是编码器的输出),这些隐藏状态可以用于下游任务,如聚类、分类或作为其他任务的输入特征。比如给定一段文本,模型输出该文本的向量表示,这些向量可以用于情感分析、推荐系统或相似度计算等任务。

bias

在LoraConfig 配置中,bias参数用于指定 LoRA 微调时如何处理偏置(bias)项。具体来说,这个参数控制了在低秩适应中,是否保留或者修改偏置项。LoRA微调一般会将权重矩阵拆分成低秩矩阵来减少训练时的计算开销,但偏置项通常会保留或处理得不同。

bias参数的常见选项:

\1. “none”:不对偏置项进行微调,也就是说,偏置项保持原样,不参与LoRA的低秩适应过程。这是默认选项,表示不修改偏置项,保持原有权重。

\2. “all”:对所有的偏置项进行微调,这意味着LoRA不仅会对权重矩阵进行低秩适应,还会对偏置项进行相应的调整。

\3. “lora_only”:仅对LoRA引入的低秩矩阵中的偏置项进行微调。即在LoRA的低秩变换部分,偏置项会被包含在内,并进行优化。

为什么选择 “none” 作为 bias 的值?
在许多LoRA微调的实现中,偏置项通常被认为是模型的一个稳定部分,尤其是在进行低秩微调时,可能并不需要对它们进行调整。使用 “none” 的选择意味着微调过程只会集中在权重矩阵的低秩部分,而不涉及偏置项的变动,这有助于减少额外的计算和参数调节,保持模型的原始结构。

如何学习大模型

下面这些都是我当初辛苦整理和花钱购买的资料,现在我已将重要的AI大模型资料包括市面上AI大模型各大白皮书、AGI大模型系统学习路线、AI大模型视频教程、实战学习,等录播视频免费分享出来,需要的小伙伴可以扫取。

现在社会上大模型越来越普及了,已经有很多人都想往这里面扎,但是却找不到适合的方法去学习。

作为一名资深码农,初入大模型时也吃了很多亏,踩了无数坑。现在我想把我的经验和知识分享给你们,帮助你们学习AI大模型,能够解决你们学习中的困难。

一、AGI大模型系统学习路线

很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,我下面分享的这个学习路线希望能够帮助到你们学习AI大模型。

在这里插入图片描述

二、AI大模型视频教程

在这里插入图片描述

三、AI大模型各大学习书籍!

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

四、AI大模型各大场景实战案例

在这里插入图片描述

五、AI大模型面试题库

在这里插入图片描述

六、结束语

学习AI大模型是当前科技发展的趋势,它不仅能够为我们提供更多的机会和挑战,还能够让我们更好地理解和应用人工智能技术。通过学习AI大模型,我们可以深入了解深度学习、神经网络等核心概念,并将其应用于自然语言处理、计算机视觉、语音识别等领域。同时,掌握AI大模型还能够为我们的职业发展增添竞争力,成为未来技术领域的领导者。

再者,学习AI大模型也能为我们自己创造更多的价值,提供更多的岗位以及副业创收,让自己的生活更上一层楼。

因此,学习AI大模型是一项有前景且值得投入的时间和精力的重要选择。

### DeepSeek 模型在文本分类中的实现方法 DeepSeek 是一种基于 Transformer 的大型语言模型,在多种自然语言处理任务中表现优异,其中包括文本分类。它利用动态稀疏注意力机制来高效处理长文本数据,并通过预训练和微调的方式快速适配具体的文本分类场景。 #### 实现方法概述 为了将 DeepSeek 应用于文本分类任务,通常需要以下几个核心步骤: 1. **加载预训练模型**:使用 Hugging Face 提供的 `transformers` 库加载已有的 DeepSeek 预训练模型。 2. **准备数据集**:对目标文本数据进行清洗、分词以及向量化操作,以便输入到模型中。 3. **定义下游任务架构**:为文本分类设计一个适合的任务头(Task-Specific Head),通常是全连接层加上 softmax 或 sigmoid 输出概率分布。 4. **微调模型参数**:针对特定的数据集和标签空间,调整模型权重以优化性能。 5. **评估与部署**:验证模型的效果并通过 API 或其他方式将其集成至生产环境。 以下是详细的代码示例说明如何完成上述过程。 --- ### 示例代码:使用 DeepSeek 进行二元文本分类 假设我们有一个简单的二元分类问题——判断一段评论是否正面或负面情绪表达,则可以通过如下 Python 脚本构建解决方案。 ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments import torch from datasets import load_dataset # 加载 tokenizer 和预训练模型 model_name = "deepseek/lm" # 替换为您使用的具体版本号 tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained( model_name, num_labels=2, # 假设这是一个二分类问题 ) # 数据集加载 (这里以 IMDb 数据为例) dataset = load_dataset("imdb") def preprocess_function(examples): """ 对样本进行 tokenization """ return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=128) tokenized_datasets = dataset.map(preprocess_function, batched=True) # 定义训练参数 training_args = TrainingArguments( output_dir="./results", evaluation_strategy="epoch", learning_rate=2e-5, per_device_train_batch_size=16, per_device_eval_batch_size=16, num_train_epochs=3, weight_decay=0.01, ) trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_datasets["train"], eval_dataset=tokenized_datasets["test"] ) # 开始训练 trainer.train() # 测试预测功能 example_sentence = ["这部电影非常精彩!", "这是一部糟糕透顶的作品。"] inputs = tokenizer(example_sentence, return_tensors="pt", truncation=True, padding=True, max_length=128) outputs = model(**inputs).logits predictions = torch.argmax(outputs, dim=-1) print(f"Predictions: {['Positive' if p == 1 else 'Negative' for p in predictions]}") ``` 此段代码展示了完整的流程,包括但不限于模型初始化、数据预处理、训练配置设定及最终推理阶段的操作指南[^1]。 --- ### 关键技术点解析 - 动态稀疏注意力机制允许模型更灵活地分配计算资源给重要上下文区域,从而提高效率并降低冗余运算成本。 - 自监督学习策略减少了对标记样例数量的需求,增强了系统的泛化能力和迁移潜力[^3]。 - 微调过程中引入了领域自适应理念,使得经过适当调节后的网络结构更加契合实际应用场景下的语料特征。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值