基于Intel ARC Graphics本地部署qwen1.8B大模型

基于Intel ARC Graphics本地部署qwen1.8B大模型

背景:

朋友们,前两天在本地搭建好了 xpu 版本的pytorch后,就想在本地部署一个大模型来试试这个Intel arc 这个GPU行不行。于是就有今天这篇踩坑文章,让我们直接开始。

硬件环境:

CPU: Intel Ultra 5 125h

GPU: Intel Arc Graphics

软件环境

Intel® oneAPI Base Toolkit 2024.2 版本(可以参考上一篇环境搭建

python:3.12.7

anaconda:2024.9.2

pytorch:2.6.0.dev20241119+xpu

一、首先下载我们的模型:

这里我用的是 modelsocpe 来进行下载:

1.1 选择模型

首先去modelsocpe上面搜我们需要的模型

在这里插入图片描述

然后点击模型文件->模型下载 这里给我们提供了3种下载方式:SDK 下载、GIT下载、命令行下载

在这里插入图片描述

SDK下载我没有用过,就不讲了

1.2 GIT下载:

确认是否安装 lfs

git lfs install

git clone 下载:

git clone https://www.modelscope.cn/Xenova/Qwen1.5-1.8B-Chat.git

1.3 命令行下载:

安装 modelScope

pip install modelscope

下载完整模型:

modelscope download --model Xenova/Qwen1.5-1.8B-Chat

下载模型到指定的目录:

爬虫Python学习是指学习如何使用Python编程语言来进行网络爬取和数据提取的过程。Python是一种简单易学且功能强大的编程语言,因此被广泛用于爬虫开发。爬虫是指通过编写程序自动抓取网页上的信息,可以用于数据采集、数据分析、网站监测等多个领域。 对于想要学习爬虫的新手来说,Python是一个很好的入门语言。Python的语法简洁易懂,而且有丰富的第三方库和工具,如BeautifulSoup、Scrapy等,可以帮助开发者更轻松地进行网页解析和数据提取。此外,Python还有很多优秀的教程和学习资源可供选择,可以帮助新手快速入门并掌握爬虫技能。 如果你对Python编程有一定的基础,那么学习爬虫并不难。你可以通过观看教学视频、阅读教程、参与在线课程等方式来学习。网络上有很多免费和付费的学习资源可供选择,你可以根据自己的需求和学习风格选择适合自己的学习材料。 总之,学习爬虫Python需要一定的编程基础,但并不难。通过选择合适的学习资源和不断实践,你可以逐步掌握爬虫的技能,并在实际项目中应用它们。 #### 引用[.reference_title] - *1* *3* [如何自学Python爬虫? 零基础入门教程](https://blog.csdn.net/zihong523/article/details/122001612)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [新手小白必看 Python爬虫学习路线全面指导](https://blog.csdn.net/weixin_67991858/article/details/128370135)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值