FAR,FRR,ERR的含义以及计算方式,以及在在线签名鉴别中的应用
在生物识别技术中,有三个重要的指标用来评估识别系统的性能和可靠性,分别是FAR,FRR和ERR。这三个指标分别代表什么意思呢?它们又是如何计算的呢?本文将对这些问题进行简要的介绍,并举例说明它们在在线签名鉴别中的应用。
FAR(False Acceptance Rate)
FAR(False Acceptance Rate)是指错误接受率,也就是将非法用户错误地识别为合法用户的概率。例如,在一个在线签名鉴别系统中,如果一个人伪造了另一个人的签名,并试图通过系统验证,那么如果系统将这个伪造者错误地认为是真实用户,就发生了一次错误接受。FAR可以用以下公式计算:
FAR = 错误接受次数 / 非法用户尝试次数
FRR(False Rejection Rate)
FRR(False Rejection Rate)是指错误拒绝率,也就是将合法用户错误地识别为非法用户的概率。例如,在一个在线签名鉴别系统中,如果一个人使用了自己的真实签名,并试图通过系统验证,那么如果系统将这个真实用户错误地认为是伪造者,就发生了一次错误拒绝。FRR可以用以下公式计算:
FRR = 错误拒绝次数 / 合法用户尝试次数
ERR(Equal Error Rate)
ERR(Equal Error Rate)是指相等错误率,也就是当FAR和FRR相等时的错误率。ERR是一种综合评价识别系统性能的指标,它反映了系统在不同安全级别下的平衡点。一般来说,当系统设置得越严格,FAR就越低,但FRR就越高;反之,当系统设置得越宽松,FAR就越高,但FRR就越低。因此,需要根据不同的应用场景和需求来调整系统的参数,使得FAR和FRR达到一个合理的平衡。ERR是在FAR和FRR相等的情况下的错误率。可以通过调整系统的阈值来寻找FAR和FRR相等的点,然后计算出此时的错误率。
在在线签名鉴别中,FAR,FRR和ERR都是重要的评价指标。在线签名鉴别是一种基于动态特征的生物识别技术,它不仅考虑了签名的形状和大小,还考虑了签名过程中的速度、压力、加速度等信息。这些信息可以有效地区分真实用户和伪造者,提高识别的准确性和安全性。然而,在线签名鉴别也面临着一些挑战,例如签名样本的数量和质量、签名者的心理和生理状态、环境因素等都会影响签名的稳定性和可重复性,从而导致识别错误的发生。因此,在设计和评估在线签名鉴别系统时,需要充分考虑这些因素,并采用合适的算法和方法来降低FAR和FRR,提高ERR。