AGI对人类最致命的打击,就是它的学习超速度与合作超能力!孙正义说,超级人工智能比人脑聪明一万倍!

人类带给这个世界最大的礼物是思考的能力,最大的危险则是无法与思维方式不同的人共同思考。By道娜·马尔科娃《协同的力量》

2024年10月30日,孙正义接受CNN记者Richard Quest采访时说:AGI(通用人工智能)的定义和人脑是一样的,ASI(超级人工智能)的定义,有多超级?10倍超级或100倍超级?我对ASI的定义是比人脑聪明10000倍,这就是我对ASI的定义,这将在2035年,10年后的今天到来。

是不是很疯狂?人类发明轮船、电话、飞机、电脑、手机、互联网等等科技工具,不断地扩展自己的能力,同时向工具迁移自己的能力,然后最后的发明是彻底超越自己的ASI。这些发明是怎么完成的?他们发明的工具产生超级协同。

翻阅AI的发展简史,你会发现,站在人类智能顶端少数人,他们可能性格不同、思维方式不同,但是他们发明东西相互激活,产生了超级协同,然后又各自升级,再次相互激活,就催生了英伟达帝国。

2022年11月30日发布的能够对话的GPT-3.5版本推开了AI时代的大门,也把英伟达推向了3万亿美元市值的巅峰,短时间内。2024年11月6日,英伟达收盘上涨近 3%,市值为 3.43 万亿美元,超过苹果的 3.4 万亿美元。

01 “深蓝”向右、 “水母”向左

1997年5月11日,国际象棋大师加里·卡斯帕罗夫卡以2.5比3.5(1胜2负3和)输给IBM公司的计算机程序“深蓝”,成了计算机战胜人类标志性事件。厉害吗?但后来深蓝没有声音了,昙花一现。

真正厉害的是大众所忽视的另外一件事,几个月后,马尔科姆·戴维斯用依照身旁计算机的指令行棋,在西洋双陆棋比赛中与纳克·巴拉德及迈克·森基维茨,打了个平手。这个平手所蕴含的未来超过了“深蓝”。

戴维斯用的计算机,运行的是一种与众不同的人工智能软件,名为“水母”。“水母”的独特之处在于,它是一个神经网络,其结构受到了生物大脑的启发。当时的“深蓝”仍旧是程序大脑或者说机械大脑。

“水母”与传统软件执行程序员编写的代码不同,“水母”通过向一个人工神经元网络传递信息来做出决策。这些神经元的突触在计算机中表现为一个庞大的数字矩阵,也被称为“权重”。这个网络会评估棋局,并通过这个合成的神经系统给出一个答案。

一个简单的对话框弹了出来,列出了“水母”的决定。戴维斯根据这个决定在棋盘上移动了棋子。有时,这个程序会推荐一些颇具争议的棋步,引发观众的热烈讨论,甚至掀起一阵下注的狂潮。

巴拉德和森基维茨都答应各自与“水母”对弈300局。曾连续下了84小时棋的巴拉德,对这种马拉松式的西洋双陆棋比赛已经习以为常,并努力保持专注。他最终以58局的优势战胜了计算机,赢得了11600美元。

但森基维茨几乎输掉了相同的金额,而戴维斯打成平手,因此比赛被判为平局。巴拉德对自己的胜利颇为自得——但事后分析表明,他的骰子运气相当好,而他自知好运已然用尽。自此以后,再无人会轻率地挑战西洋双陆棋程序来赢钱。

“水母”参赛的消息很快在西洋双陆棋这个小圈子中传开。“深蓝”是一台造价高昂的超级计算机,其依赖的算力无法被人类所复制,因此它并未从根本上改变国际象棋的专业方法。事实上,“深蓝”在1997年取胜后就被拆解了。相比之下,“水母”是一款经济实惠的软件,可以在任何运行Windows的电脑上运行,它彻底变革了游戏。

伍尔西通过在家用电脑上不停与“水母”对战并向它提问,出版了《西洋双陆棋的新思路》其中汇集了一系列神经网络观点与人类直觉大相径庭的棋局。很快人们就发现,电脑总是对的。

随着时间的推移,分析师们学会了通过比较人类玩家的表现与电脑给出的理想结果之间的差异,来评估其技能,而非单纯通过胜负局数来判断。

“水母”的命运就像不知名的西洋双陆棋一样,无人知晓,即便是它的发明者都不知道,未来有一天“水母”会名声大噪。因为它所运用的神经网络,越来越强大,已经足以让人类感到恐慌与恐惧。

02 1997年,少数人让神经网络保持进化。 

英伟达在做什么?

1996年,微软推出了 Direct 3D 的标准,这催生了成百上千家公司。英伟达发现自己在跟几乎所有人竞争,但公司赖以生存的、开拓消费级 3D 图形的那项发明技术,居然跟 Direct 3D 标准不兼容。

在一次会议上,英伟达的人讨论一个重要议题:我们现在有89个竞争对手,我们知道之前的方式不对,但我们不知道正确的方式是什么。在既定规则赛道里,英伟达无法活下去,但怎么活下去?

直到黄仁勋在Fries Electronics书店,看到了定义硅谷图形的计算机图形处理方式的OpenGL手册,他有种看到金矿的顿悟感,他买了三本书发给大家,并对大家说:“我找到了咱们的未来。”

20世纪40年代初,实验者们用复杂的机电硬件来模仿大脑的神经元和突触。这些庞大的机器耗费了大量的电力和资金,但最后几乎什么实用成果都没搞出来。直到1969年,颇具影响力的麻省理工学院研究员马文·明斯基证明了单层神经元连最简单的逻辑操作都搞不定。资金断了,大部分机器都被拆掉了。

早期那种“符号”AI的进步在1974年的第一次AI寒冬里就停滞不前了。到了20世纪80年代,“专家系统”AI又火了起来,还搞出了个短暂的股市泡沫。日本、英国和美国的政府全部砸了大钱搞AI发展计划,但独立分析师们觉得,这些钱大部分都打了水漂。

与此同时,在20世纪70年代和80年代,还是有一群不服输的计算机科学家坚持研究神经网络。他们觉得,那些老机器可以用软件来重现,而且多层的神经元或许能突破单层的限制。大多数AI研究人员都觉得这群人走错路了,甚至可能是疯了。

1986年的时候,认知心理学家大卫·鲁梅尔哈特与加州大学圣迭戈分校的计算机科学家杰弗里·辛顿和罗纳德·威廉姆斯合作,发表了一种叫“反向传播”[插图]的多层神经网络数学程序。这个方法能让研究人员根据新信息来调整计算机的人工神经元,就像人脑在接到新信息时会形成新的突触连接一样。

图片

  (杰弗里·辛顿)

当某个任务被掌握后,反向传播技术便重新激活了沉寂的神经网络,为计算机操作开辟了新途径。反向传播技术使计算机软件不再需要明确的编程,使计算机系统能自我设定规则,甚至实现自我进化。

20世纪80年代后期,研究员杰拉尔德·特索罗在IBM任职时,选择离开公司热门的国际象棋研究小组,转而投身较为冷门的西洋双陆棋研究。这个游戏虽缺乏国际象棋的声望或扑克的神秘感,但更具竞技性。

玩家在24点的棋盘上向相反方向移动棋子,试图击中对方棋子,同时受两颗骰子的掷骰结果影响。其不可预测性对赌徒颇具吸引力,而对特索罗而言,西洋双陆棋则有着别样的魅力。通过模拟掷骰子的方式,他迅速生成了数十万局人工西洋双陆棋游戏,这些游戏数据成了神经网络学习的训练资料。

特索罗几乎是单枪匹马地进行这项小众研究。与神经网络相似,很少AI研究者会认真对待西洋双陆棋。他最初训练神经网络去模仿顶尖的人类玩家,但这种方法几乎没有带来什么有价值的结果。

大约1990年,特索罗决定尝试一种全新的方法。他从神经网络中剔除了所有关于西洋双陆棋的战略建议,仅保留了游戏规则和一组初始的随机加权神经元。接着,他让计算机自己与自己进行数十万局的对弈。

这种技术被称作“强化学习”(,而特索罗是首位成功运用此技术的人。刚开始时,程序的表现毫无章法,移动棋子显得随心所欲。然而,在历经数千局对弈后,神经网络学会了单独留下一个棋子是不利的,而将两个棋子堆叠起来则是有利的——这使得它的水平提升到一个有能力的初学者层次。

经过数万局的对弈后,神经网络开始运用更为高级的概念,例如利用多层棋子来构建屏障。当对弈次数达到20万局时,特索罗所称作TD-Gammon的神经网络已经达到了强劲的中级水平。在随后的几年里,特索罗让TD-Gammon接触到了数百万场模拟棋局,而到了1995年时,TD-Gammon已经能够采用人类从未见过的策略。此时的神经网络不再仅仅是学习,而是在创新。

TD-Gammon未受传统智慧的限制,发现了一种全新的西洋双陆棋策略。它察觉到,人类玩家为了在游戏刚开始建立优势,往往会过度冒险,而实际上,保守的开局策略更为稳妥。同时,在游戏的残局阶段,它常常见到人类玩家放弃那些能确保胜利的机会,反而贪婪地试图将得分翻倍,这种策略在多数人类玩家眼中显得过于鲁莽。

而在游戏的中局阶段,TD-Gammon展现出了一些更为精妙的招式,这些招式之深奥,唯有经过人类专家深入推敲后方能领悟。1995年,西洋双陆棋教练基特·伍尔西(Kit Woolsey)在与TD-Gammon对弈之后,致信特索罗,表达了自己的赞赏之情:

我发现,将TD-Gammon与那些高水平的国际象棋计算机进行比较,真是令人着迷。国际象棋计算机能够精确计算出棋局的变化,且表现卓越。然而,它们的软肋是,在面对那些局面模糊、难以一眼洞穿的棋局时举棋不定。TD-Gammon却恰恰相反。它在局面模糊、需要依靠判断而非精确计算的棋局中展现出了强大的实力……你创造的不是一个像国际象棋计算机那样,只是能比人类更快进行计算的笨拙机器,相反,你创造了一台聪明的机器,它能够通过经验来学习。这几乎与人类的学习方式如出一辙。

然而,IBM未能将特索罗的这一项目商业化。试问,一家商业服务器供应商又怎么会有动力去向数百位客户推销西洋双陆棋软件呢?这的确是个问题。而这个小众领域在1994年由挪威研究员弗雷德里克·达尔成功填补。

达尔是个非比寻常的人,他热爱玩西洋双陆棋、国际象棋、模拟坦克战、柔术,还爱在树林里找能吃的蘑菇。他以前在挪威的国防部门上班,模拟假设的敌人入侵的情景。他的工作启发来自1983年马修·布罗德里克主演的电影《战争游戏》(WarGames)。在这部电影里,人工智能企图发动核战争。

达尔跟我说,他可没这野心,但他确实对军事挺感兴趣——但后来,他的研究经费就没了。“那段时间可不好过。”他这么说(我猜他可能在开玩笑)。写博士论文的时候,达尔弄了个神经网络,让计算机自己跟自己进行了几百万次模拟战斗,并预测战斗结果。这套框架也能轻松用到西洋双陆棋上,达尔很快就超越了特索罗的成绩。

1994年,达尔推出了“水母”,这是第一个卖给大众的商业神经网络。“水母”是玩了几百万场西洋双陆棋而训练出来的,虽然训练过程计算量很大,但最后的产品小巧到能装进3.5英寸的软盘,达尔就在他自己的网站上卖。

这样一来,这个领域很早就明确了AI领域“训练”阶段和“推理”阶段的区别:训练是计算机学习的过程,推理是计算机运用知识的过程。比起人类那颗大约1.5公斤重、负责推理的大脑,还有为其训练提供条件的数亿年进化相比,推理的成本要低得多。

达尔很喜欢生物学的比喻。他给产品取名“水母”,就是为了向那些古老的水生刺胞动物致敬,它们的神经网络掌控着刺激和反应系统。他说,他的程序“只有大约100个脑细胞,这和海蜇差不多”。这就是神经结构的威力:无论是攻克西洋双陆棋,还是在危机四伏的海洋生态系统中存活5亿年,甚至抵御敌人,都只需百来个小小的细胞。

“水母”成了首个在游戏中超越人类的神经网络。之后,达尔专注于扑克领域。他运用了强化学习技术,迅速构建,或更贴切地说是“进化”出了一个神经网络,这个网络能在双人限注德州扑克的单挑玩法中击败世界上的任何人。

达尔授权了一家老虎机制造商使用这个神经网络,该制造商在拉斯维加斯的赌场中安装了这个无人能敌的扑克机器人,供所有挑战者用真钱对战。结果,依然无人能够打败这台机器。

尽管达尔从老虎机的运营中赚取了可观的收益,但当他试图为无限注德州扑克构建一个类似的程序时,遭遇了难题。在无限注玩法中,玩家可以下注任意金额,这使得合成数据集远大于他为限注扑克和西洋双陆棋所构建的封闭系统。

达尔的无限注神经网络在处理这庞大的数据量时遇到了学习困难。“它做出的动作还算合理,但从未完全达到我的期望。”他坦言。然而,革命性的进展在此停滞。达尔在这个问题上耗费了多年心血。

难点在于,他几乎无法理解自己的扑克机器人是如何运作的。其神经网络的结构复杂程度与无脊椎动物的神经系统相当,难以解释。试图通过计算网格中的个体权重来找出游戏策略,就如同试图通过显微镜观察脑细胞来解开意识之谜一样困难。

当神经网络达到训练瓶颈时——而这几乎是必然会发生的情况,几乎没有明显的方法来改进它。经典编程讲究的是逻辑与顺序,操控神经网络却需要截然不同的思维。达尔将其比作生物实验:结果难以预测,微小的变量改动或能引发意想不到的效果。达尔竭尽所能优化他的扑克机器人。

达克调整了评估功能,随意调整计算机内存,替换了神经元的激活方式,甚至为机器人构建了一个更简化的数据世界以供人们探索——但始终未能使机器人达到专家级水平。最终,达尔像众多神经网络研究者一样选择了放弃。

03 2003年,并行计算的大神聚合。

英伟达在做什么?

1999年底,黄仁勋推出了“GeForce”显卡,意为“几何力”。它搭载NV10驱动,每秒能渲染1000万个三角形,并能根据可移动光源的位置改变3D场景中像素的颜色。在单一平台上实现“变换与光照”的统一是行业的一大突破,英伟达打算对此进行大力宣传。

“简而言之,他们现在只需花2美元,就能做到以前工作站需要2000美元才能做到的事。”,乔恩·佩迪如此评价。佩迪是计算机图形领域权威级别专家,他撰写的多本教科书均是该领域的重要参考。

从硅图公司挖来的英伟达营销人员维沃利头脑聪明,他察觉到,玩家在做购买决定时,会参考六七位独立的硬件评测者的意见。维沃利主动联系这些评测者,告诉他们GeForce是全球首个图形处理器,或称“GPU”。

尽管这个术语是维沃利自创的,但评测者们开始采用这一分类。不久之后,图形加速器就普遍被称为GPU了。维沃利表示:“由于我们创造了这个类别,因此我们自然能成为这个领域的领头羊。”

作为游戏《毁灭战士》与《雷神之锤》的首席程序员约翰·卡马克,他可是位编程高手,他对图形芯片

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值