ChatGPT、Sora、AlphaFold等众多改变世界的AI技术都是基于谷歌传奇的Transformer语言架构,为什么谷歌没有领先发布ChatGPT? 谷歌20%的制度(每个工程师都可以自由支配 20% 的工作时间)的创新精神怎么失效了?
创新领先有3个条件:
一是方向大致正确;
二是坚持相信选择的方向;
三是亏钱也能够坚持。
2015年创立的OpenAI至今不赚钱,但已经成了AI的破局者、引领者,改变了整个时代。2006年英伟达发布的Cuda,Cuda亏钱亏了6年,一度让英伟达的股价只有2美元。
英伟达等来深度学习开山鼻祖之一的Geoff Hinton的学生Alex Krizhevsky在英伟达的GPU GTX 580上成功训练出了深度卷积神经网络AlexNet,开启AI的大爆炸时代。
英伟达创始人黄仁勋常挂在嘴边的一句话是“我们总是离倒闭还有30天”,向死而生的英伟达提供的软硬件让Open AI在谷歌的基础上成功创立了ChatGPT,谷歌才回过神来,一路狂奔去追赶。
谷歌靠搜索印钱就像英特尔靠CPU印钱一样,躺赢中就给后来者让路了。许多谷歌老员工批评谷歌慢慢从一个以创新为中心的游乐场,转变为一个注重利润的官僚机构。
谷歌游乐场干过做过很多令人眼花缭乱的事,但没有最终的结果。开创AI时代的Transformer语言架构起源于谷歌,但在谷歌之外才发挥了真正的威力。
01失去前瞻焦点的谷歌
爱丽丝说,在早餐之前先想六件不可能发生的事情。
谷歌凭借其知名度和影响力,吸引了全世界的天才。天才密度指数不亚于苹果、微软。2015年,谷歌的CEO也换成了印度人桑达尔·皮查伊,但劈柴哥上来之后的操作没有像微软产生刷新反应,而是保持着谷歌的路径依赖效应。
2012年谷歌就尝试开发生成式AI搜索,2017年Transformer架构成功创立,谷歌就有被建议训练万亿参数大模型,但未被高层采纳。2020年,谷歌再次被内部邮件提醒生成式大模型时代了,仍被高层忽视了。
Transformer架构创立则是跨越型的技术创新和技术进化,但该技术的起源于2011年底苹果正式推出Siri的影响。Siri承诺能够在日常对话中为用户提供即时答案。谷歌高层如临大敌,认为Siri可能会抢走他们的搜索流量。
2012年,正在谷歌实习的乌斯科瑞特做出了一个关键性的决策——放弃攻读博士学位,转而加入谷歌的一个特别团队。这个团队负责开发一个能够在搜索页面直接回答用户问题的前沿系统,而不需要将用户引导至其他网站。
乌斯科瑞特所在团队受到了谷歌的高度重视,他对于有机会深入研究能与人类进行某种形式对话的计算机系统而感到非常兴奋,当时人工智能方法最先进的是循环神经网络,超越了其他类型的神经网络包含多个层级,信息在各层间传递,寻找最佳的响应方式。
谷歌开始全力调整人才结构,以期构建能够产生类似人类反应的系统,比如自动完成电子邮件或创建简单的客户服务聊天机器人。然而,循环神经网络在处理长文本序列时面临巨大挑战。
例如,为了准确理解描述 "Joe 是一名棒球运动员,吃了一顿丰盛的早餐后,他去了公园打了会棒球 " 的文本,语言模型必须记住关于棒球的信息。用人类的语言来说,这就是所谓的 " 关注力 "。
为了解决这一问题,业界提出了 " 长短期记忆 "(LSTM,long short-term memory)模型,它允许语言模型处理更长、更复杂的文本序列。然而,计算机仍然需要严格按顺序处理这些序列,即一个单词一个单词地处理,这导致它们可能会错过文本后部的关键上下文线索。
乌斯科瑞特对此表示:" 我们当时使用的方法就像是创可贴,虽然能暂时解决问题,但无法让正确的方案真正大规模地发挥作用。"2014年,乌斯科瑞特顿悟成仙,开始构思一种全新的方法,他称之为 " 自注意力机制 "(Self-Attention)。
注意力机制允许神经网络通过引用文本中的其他部分信息来翻译单词,帮助澄清单词的意图,从而产生更准确的翻译。他解释说:" 自注意力机制能够考虑所有因素,并提供一种有效的方式,允许同时查看多个输入,然后有选择性地筛选出某些东西。"
尽管人工智能科学家通常避免将神经网络的工作方式与人脑的实际工作方式混为一谈,但乌斯科瑞特却相信 " 自注意力 " 机制与人类处理语言的方式有着一定的相似性。他认为," 自注意力 " 模型不仅可能比循环神经网络更快、更有效。
更重要的是,其处理信息的方式非常适合那些为支持机器学习热潮而设计的强大并行处理芯片。它摒弃了传统的逐个单词线性处理方法(即按顺序查看每个单词),转而采用一种并行处理方式,即一次性查看多个单词并处理。
乌斯科瑞特推测,如果操作得当," 自注意力 " 机制可能只需一个算法,就能实现比传统方法更出色的性能。" 自注意力 " 机制,没有得到乌斯科瑞特获得过两项谷歌教授科研奖父亲的支持,他父亲持保留意见。
大多数人对于乌斯科瑞特放弃所有现有的神经结构模式,尤其放弃循环神经网络,认为是异想天开。尽管遭遇了质疑,乌斯科瑞特成功地说服了几位同事一同进行关于 " 自注意力 " 的实验。这些努力最终取得了显著的成果,并在 2016 年发表了一篇相关的研究论文。
然而,当乌斯科瑞特提议进一步推进研究,探索 " 自注意力 " 在处理更大规模文本序列上的潜力时,他的合作者们却纷纷表示不感兴趣。他们似乎更倾向于将已经学到的知识应用于实际项目上,像那些带着微薄收益离开赌场的赌徒,他们对已经获得的成果感到满足。
乌斯科瑞特更加坚信 " 自注意力 " 机制的巨大潜力和它在更复杂任务上的应用前景。他说:" 这项技术已经被证明是有效的,它不仅被用于谷歌的搜索服务,还被应用于广告等多个不同的领域。从很多方面来看,这是一个惊人的成功。但我不想就此止步。"
为了推动这一理念的实现,乌斯科瑞特决定在位于谷歌园区北端查尔斯顿路的 Building 1945 大楼概述他的愿景。2016年,乌斯科瑞特与在谷歌工作三年的伊利亚 · 波洛苏欣聊起,波洛苏欣在谷歌搜索领域提供直接回答用户问题技术支持的挑战。
乌斯科瑞特灵机一动,提出了一个可能的解决方案:" 为什么不试试‘自注意力’机制呢?" 这个建议引起波洛苏欣的兴趣,他也加入了。同时,波洛苏欣又把‘自注意力’机制介绍给了谷歌大脑团队的阿希什 · 瓦斯瓦尼,一位神经网络将极大地推动人类理解的科学家。
因此,乌斯科瑞特、波洛苏欣和瓦斯瓦尼开始合作,起草了《Transformer:迭代 " 自注意力 " 和处理的通用架构》这份设计文件。乌斯科瑞特透露,他们之所以选择 " Transformer " 这个名字,是因为这种机制能够转换接收到的信息,使系统能够像人类一样提取尽可能多的理解力
2017 年初,波洛苏欣离开了谷歌,创立了自己的公司。妮基 · 帕尔玛加入了乌斯科瑞特所在的团队,专注于改进谷歌搜索的模型文体。波洛苏欣下属利昂 · 琼斯从同事那里听说了 " 自注意力 " 的概念,这一创新想法立刻激发了他的浓厚兴趣,他也加入了乌斯科瑞特团队。
乌斯科瑞特团队继续吸引着改进大语言模型的人才,理论计算机科学家卢卡兹 · 凯泽和实习生戈麦斯也加入了进来。他们两位很快意识到," 自注意力 " 机制是极具潜力的解决方案,有望解决他们当前面临的问题。
整个团队着手构建一个基于 " 自注意力 " 机制的模型,用于语言翻译。他们采用了名为 BLEU(双语替换评测,bilingual evaluation understudy)的基准来衡量模型性能,这个基准通过将机器的翻译结果与人类的翻译进行比较。
从一开始,他们的新模型就展示了非凡的性能。乌斯科瑞特兴奋地表示:" 我们从没有概念证明到至少拥有了与长短期记忆网络(LSTM)相当的东西。虽然一开始它并没有展现出相对于 LSTM 的明显优势,但我们相信它的潜力远不止于此。"
然而,尽管早期成果令人鼓舞,但自那以后,他们的工作一直处于停滞状态。直到 2017 年,公司传奇人物并且具有5年深度学习的诺姆 · 沙泽尔正对大语言模型产生流畅对话方面的表现感到失望时,听到了乌斯科瑞特团队热烈讨论,成了第八位最关键的成员。
对于当时循环神经网络的局限性感到不满的沙泽尔,心中涌起了一股冲动:" 让我们去替换它们吧!"沙泽尔的加入对项目至关重要。乌斯科瑞特解释说:" 这些理论或直觉上的机制,比如‘自注意力’,总需要经验丰富的‘魔术师’来细心实施,才能显现出其生命力。"
沙泽尔立即开始施展他的 " 魔法 "。他决定亲自编写Transformer项目的代码:" 我接受了他们的基本想法,然后自己动手去实现。" 在这个过程中,他偶尔会向凯泽请教一些问题,但大部分时间他都是埋头苦干,最终使这个系统达到了新的高度。
戈麦斯回忆说:" 这开启了我们的冲刺模式。" 随着即将到来的最后期限—— 5 月 19 日,即神经信息处理系统会议的论文提交截止日期,团队的动力空前高涨。随着硅谷的冬天渐渐过渡到春天,他们的实验步伐也加快了。
团队测试了两种Transformer模型:一个是经过 12 小时训练的标准模型,另一个更强大的 "Big" 模型则经过了三天半的训练。接着,他们让这些模型开始进行英语到德语的翻译任务,震撼时刻来了。
Transformer模型的基础表现超出了所有人的预期,它轻松超越了所有对手特别是所谓的 Big 模型,在展现出更高计算效率的同时,其 BLEU 分数更是刷新了纪录。帕玛尔表示:" 我们的处理速度超过了任何人,但这仅仅是开始,因为 BLEU 分数仍在不断攀升。"
最后两周内,团队喝着咖啡疯狂忙碌。实习生戈麦斯投入到了疯狂的调试工作中,同时还负责制作论文中的精美可视化资料和图表。他回忆道:" 我们尝试了各种可能的技术和模块组合,不断地试验哪些有效,哪些无效。通过不断地迭代、快速试验和纠错,我们终于完成了现在所说的Transformer组件。"
琼斯也赞扬了沙泽尔在简化工作中的关键作用,称他像是一个真正的 " 魔法师 ", 总能化繁为简,提炼出最精华的部分。瓦斯瓦尼则回忆道,有一天晚上,当团队正埋头撰写论文时,他累得倒在了办公室的沙发上。
在疲惫的恍惚中,瓦斯瓦尼他凝视着隔断沙发和房间其他部分的窗帘,上面的图案给了他深刻的启示,他觉得这些图案仿佛大脑中的突触和神经元,错综复杂却又有序。他与在场的戈麦斯分享了这一想法,认为他们正在研究的东西将远远超越机器翻译的范畴。
瓦斯瓦尼激动地说:" 最终,就像人脑一样,我们需要把语音、音频和视觉等因素统一到一个框架下。我有一种强烈的预感,我们正在探索的,是更为广泛、更为深远的东西。"然而,在谷歌的高层看来,这可能只是又一个有趣的人工智能项目而已。
当《连线》杂志询问项目团队成员,他们的上司是否曾要求他们汇报项目进展时,答案是否定的。但乌斯科瑞特坚信:" 我们知道这可能是一件能够改变整个行业的大事件。这使得我们对论文的最后一句话非常着迷,那句话中我们在那里对未来的工作进行了大胆的评论和展望。"
这句话揭示了Transformer模型未来的无限潜力——它将基本应用于所有人类表达形式。论文中写道:"我们对基于注意力的模型的未来充满期待。我们计划将Transformer拓展到涉及文本以外的输入和输出模式的问题,并深入探讨图像、音频和视频等领域。"
在接近截止日期的几个不眠之夜里,乌斯科瑞特意识到他们需要为这篇论文起一个响亮的标题。琼斯也注意到,团队已经完全放弃了那些被公认为最佳实践的方法,特别是长短期记忆网络(LSTM),转而全心投入到 " 自注意力 " 模型的研究中。
灵感来自于披头士乐队的一首经典歌曲《你所需要的就是爱》(All You Need Is Love),琼斯脑海中闪现出一个想法:为什么不将论文命名为《你所需要的是注意力》(Attention Is All You Need)?这个标题不仅简洁明了,而且富有深意,完美地契合了他们的研究成果。
在截止日期即将到来的紧张时刻,他们仍在忙碌地收集实验结果。帕玛尔回忆说:" 在我们提交论文前的五分钟,英语翻译成法语的数据才刚刚出炉。我坐在 Building 1965 大楼的微型厨房里,手忙脚乱地在论文中填入最后一个数字。"
在离截止时间仅剩不到两分钟的情况下,他们终于提交了论文。论文发表至今,被引用次数已超过11万。
张一鸣曾说:“爱丽丝说,在早餐之前先想六件不可能发生的事情。就像爱丽丝说的,每天每年都想一想有什么事情可以发生,但不想不做就不会发生的事情。”
八个天才的想法连在一起开创了AI时代的浪潮!
02失去方向感的谷歌
当Transformer论文发表时,他认为谷歌内部几乎没人意识到其真正的意义。by奥特曼
2023年2月14日,前谷歌员工Praveen Seshadri在一篇题为《迷宫在老鼠里》的博客文章中称,该公司已经迷失方向,效率低下,管理不善,并因风险而走向瘫痪。Seshadri认为,谷歌正处在脆弱的时刻,但它问题不在于其技术,而在于其文化。
“在我看来,谷歌有四个核心文化问题——没有使命、没有紧迫性、例外论的错觉、管理不善。”Seshadri说,“它们都是拥有一台名为‘广告’的印钞机的自然结果,它每年都在无情地增长,掩盖所有其他罪恶。
Seshadri认为大多数谷歌的员工最终不是为客户服务,而是为其他谷歌员工服务。他将公司描述为一个“封闭的世界”,加倍努力工作不一定会得到回报,反馈是“基于你的同事和经理对你工作的看法。”他补充说,员工还被困非常过时流程中。
谷歌采用瀑布式规划流程。如果一个团队中的所有高级经理都要花一个月时间策划六个计划,再花一个月休假,一个月进行绩效评估,那么突然间就有足够时间进行一年一次的重组和战略变更了,对吧?什么都没完成,没有问题,没有风险——升职发奖金,继续前进。
谷歌有175000多名有能力且薪酬丰厚、工作很少的员工。他们像老鼠一样,他们被困在系统的迷宫中。老鼠定期被喂食他们的“奶酪”(晋升、奖金、美味的食物、更高级的津贴),尽管许多人希望从他们的工作中获得个人满足感和影响力,但系统训练他们平息这些不适当的欲望并了解这实际上意味着什么是“谷歌人”——只是不要搅局。
正如Deepak Malhotra(哈佛商学院教授、谈判专家)在他出色的商业寓言中所说,在某些时候,问题不再是老鼠在迷宫里,问题是“迷宫在老鼠里”。Seshadri表示,谷歌有机会扭转局面,但不能仅仅通过规避风险来继续取得成功。谷歌需要“以对使命的承诺来领导”,奖励那些为“雄心勃勃的事业”而奋斗的人,并削减中层管理人员的层级。
谷歌只是为Transformer技术申请了临时专利,并没有引起多大重视。谷歌的其他员工对这个技术还是无感,毕竟谷歌新技术太多、太习以为常了,有什么了不起的,这只是谷歌上万项技术创新之一。
当Transformer团队收到会议同行评审的反馈时,他们感受到了复杂的情绪。帕玛尔表示:" 评审反馈既有正面的,也有极为正面的,还有一些是‘一般’。" 虽然并非所有评审都给予了极高的评价,但这篇论文最终被接收,参加了一个晚上的海报展示会。
2017年12月6日的海报展示会很轰动,计算机科学家、长短期记忆网络(LSTM)的共同发明者塞普 · 霍奇瑞特主动走来表示赞赏。毕竟,LSTM 刚刚被Transformer模型取代。虽然Transformer模型的潜力巨大,但它并未立即引发全球轰动,甚至在谷歌内部也未引起太多注意。
凯泽回忆,论文发表时,沙泽尔曾向谷歌高层提出一个大胆的建议:放弃整个搜索索引,改为训练一个庞大的网络,彻底改变谷歌组织信息的方式。这个提议当时看起来太过前卫,甚至凯泽也认为有些荒谬。
就在Transformer论文发表后不久,初创公司 OpenAI 敏锐地捕捉到了其中的商机。OpenAI 的首席研究员伊利亚 · 苏茨克维(Ilya sutskever)在谷歌期间与Transformer团队有过接触,他迅速建议 OpenAI 的科学家阿列克斯 · 拉德福(Alex Radford)深入研究这一理念。
2022年,基于Transformer模型的第一个产品 GPT 便应运而生。OpenAI 的首席执行官萨姆 · 奥特曼(Sam Altman)曾表示,当Transformer论文发表时,他认为谷歌内部几乎没人意识到其真正的意义。
乌斯科瑞特回忆道:" 对我们来说,Transformer的潜力显而易见,它能够完成真正令人惊叹的事情。你可能会问,为什么谷歌在 2018 年没有推出类似 ChatGPT 的产品?实际上,我们完全有可能在 2019 年甚至 2020 年推出类似 GPT-3 或 GPT-3.5 的产品。
同年,谷歌推出了基于Transformer的语言模型 BERT,并在次年将其应用于搜索功能。然而,相较于 OpenAI 取得的巨大成功以及微软大胆地将基于Transformer的系统整合进其产品线的举措,谷歌的这些底层变革显得相对保守和谨慎。
当被问及为何谷歌没有率先推出类似 ChatGPT 的大型语言模型时,谷歌首席执行官桑达尔 · 皮查伊解释说,在某些情况下,让其他公司先行探索市场可能是有利的。他表示:" 我并不完全确定这种做法是否总是行得通。但事实是,当人们看到其他公司如何利用这些技术后,我们有机会做得更多、更好。"
微软的印度CEO萨提亚做出了不一样的决策,2019年7月微软宣布向OpenAI投资10亿美元,并成为其首选的云服务提供商。双方表示,这是一个长期的合作关系,目标是“共同构建新一代超级计算硬件技术,并推动前沿的人工智能研究”。
八位共同创立Transformer的天才,其中六位来自美国以外的国家,他们在多样化的文化背景下共同工作,日常的偶遇和午餐时的随意交谈都可能激发出创新的思想火花。这八位天才现已全部离开谷歌,他们凭借在Transformer技术领域的深厚积累,纷纷创办了各自的公司,估值都是百万美元以上。
面对八位天才离职,CEO皮查伊坦然回应,指出即便是行业翘楚 OpenAI 也面临着人才流动的现象。他强调:" 人工智能领域本就是一个充满活力的竞技场。" 同时,他也自豪地表示,谷歌已经构建了一个鼓励非传统思维的环境。
帕玛尔赞扬道:" 谷歌在许多领域都走在时代的前沿。他们投资于卓越的人才,营造了一个允许我们自由探索和挑战极限的环境。人们需要时间来接受新事物,这是正常的。而谷歌所承担的风险,无疑是巨大的。"
在柏林办公室中,乌斯科瑞特分享了他对创新的看法:" 创新的关键在于创造适宜的条件。当人们对生活中的美好事物感到兴奋,并且乐在其中的同时,还能解决一些真正重要的问题,那么他们就是幸运的——奇迹自然会发生。"
无论谷歌CEO皮查伊怎么解释?谷歌已经从AI的领先者变成了仓促的追赶者。
03谷歌正在把仙童半导体和英特尔犯过的错误重新再来一遍
谷歌像2010年看不见GPU前景的、2015年看不见手机芯片的前景英特尔一样,他们也没有看明白Transformer的前景。
历史总是惊人的相似。20世纪“晶体管之父” 威廉·肖克利曾经吸引了八位天才和他一起办公室,可肖克利忙于享受名利,到处演讲,心思没有放在公司的业务上,他手下的八位天才集体离职出去创业,他没有反思自己问题,还骂他们是“八叛徒”。
八叛徒是罗伯特·诺伊斯、戈登·摩尔、谢尔顿·罗伯茨、朱利亚斯·布兰克、尤金·克莱纳、金·赫尔尼、杰·拉斯特、维克多·格里尼克。他们辞职很有创意,竟然在一张美元上集体签字,并写下了这样一句话:天才的想法是常人难以理解的。
1957年,在风险投资之父亚瑟·洛克的支持下,他们拿到了费尔柴尔德家族的投资,创立了仙童半导体。仙童半导体的集成电路让大规模生产成为可能,这种整合带来了更高的收益率,也为整个行业提供了蓝图。
仙童公司发展迅速,但投资人也按照同八位创始人的约定,拥有对仙童半导体的决策权,并有权在八年内以300万美金收回所有股份,如期收回了股份,这也彻底挫伤了他们的工作积极性。
1961年,最早“叛逃”的是赫尔尼、罗伯茨和拉斯特,在离开了仙童后,三人共同创办了Amelco也即是后来的Teledyne。
1962年,克莱纳离开,创办了Edex以及后来知名的风险投资公司凯鹏华盈(KPCB)。
1968年,诺伊斯带着戈登·摩尔与工艺开发专家安迪·格鲁夫离开了仙童半导体公司,而由他们三人所创立的公司就是由仙童衍生出来的公司中最为人所熟知的IT业巨头——英特尔。
1969年,仙童销售部门主任杰里·桑德斯(Jerry Sanders)带着几名员工创立了AMD半导体公司,成为英特尔的主要竞争对手。
后来陆陆续续从仙童出走的人,创办了很多公司,遍地开花如今的硅谷,超过100家公司脱胎于仙童半导体,但是仙童迅速衰弱。但仙童是硅谷的科技之火,是世界半导体和互联网行业的“母公司”!
乔布斯说:” 仙童半导体公司就像个成熟了的蒲公英,你一吹它,这种创业精神的种子就随风四处飘扬了。” 今天的谷歌重演了仙童半导体的故事,八位天才也是纷纷离去,创建了自己的公司,除了区块链项目,其他项目全部采用了Transformer语言架构。
2017年,2014年加入谷歌的伊利亚∙波洛苏欣(Illia Polosukhin)同他人共同创立了区块链公司NEAR Protocol,目前估值约为20亿美元。
伊利亚∙波洛苏欣曾作为谷歌深度学习小组项目主管,带队负责核心搜索算法业务近10年,也是谷歌TensorFlow人工智能开源项目的主要代码贡献者。
2019年,2017年加入谷歌的艾丹∙戈麦斯与他人共同创立了Cohere,该公司专注于提供NLP模型,帮助企业改善人机交互。Cohere拿到了由英伟达等参投的2.5亿美元融资,当前估值已达22亿美元。
2021年,2013年加入谷歌卢卡兹∙凯泽(Lukasz Kaiser),离开谷歌,成为OpenAI的研究员,参与名为 Q* 的神秘项目。这个项目被奥特曼描述为能够 " 揭开无知的面纱,推动探索的前沿 "。
2021年,2012年加入谷歌的雅各布∙乌斯科瑞特(Jakob Uszkoreit))同他人共同创立Inceptive。该公司主营业务为人工智能生命科学,致力于使用神经网络和高通量实验来设计下一代RNA分子,估值3亿美元。
2021年,2000年加入谷歌的诺姆∙沙泽尔(Noam Shazeer)与前谷歌工程师Daniel De Freitas共同创立Character.AI,致力于开发生成式人工智能聊天机器人。Character.AI宣布完成1.5亿美元融资,估值达50亿美元。
2022年,2016年加入谷歌大脑团队的阿希什∙瓦斯瓦尼(Ashish Vaswani)与团队8人之一基∙帕尔玛(Niki Parmar)共同创办了Adept AI(估值10亿美元)和Essential AI(获得了800万美元投资)。
2023年,2012年加入谷歌的利昂∙琼斯(Llion Jones)在日本创办人工智能初创企业sakana.ai,估值2亿美元。
更加巧合的是,谷歌像2010年看不见GPU前景的、2015年看不见手机芯片的前景英特尔一样,他们也没有看明白Transformer的前景,错过一个巨大技术浪潮,也错过一个时代。
甚至在2020年,谷歌Meena聊天机器人发布后,诺姆∙沙泽尔又发了一封内部信“Meena吞噬世界”,其中的关键结论是:语言模型将以各种方式越来越多地融入我们的生活,并且将在全球算力中占主导地位。
这太有前瞻性了,几乎准确预言了后来ChatGPT时代发生的事,也就是现在进行时。但当时谷歌高层仍旧不为所动,关键决策者完全无视,坐等谷歌奠基的新时代让给了Open AI。
量子位的文章中写到,谷歌曾拥有整个AI王国的所有钥匙,却弄丢了钥匙链。
截止到3月27日,英特尔的市值只是英伟达市值的一个零头,谷歌的市值比英伟达市值少4400亿美元。
如何创立让天才毕生工作的事业
谷问题的关键不在于是否看到了AI的机会,而在于他们是否对所看到的采取了行动。这背后的原因复杂且难以解释。"许多科技行业观察者指出,谷歌正在从一个以创新为核心的企业转变为一个更注重利润的官僚机构。
谷歌前员工麦斯对此深有体会:" 他们缺乏改变的勇气。但对于一家长期引领行业、获得巨额利润的大公司而言,做出改变确实需要极大的勇气。"实际上,谷歌在 2018 年已经开始尝试将Transformer模型融入其产品中,首先是在翻译工具上的应用。
被全球市值第二公司英伟达列为对手的华为如何避免出现谷歌这种问题的,一是保持财务上的饥饿感,把钱花出去;二是思维上保持高层的辩证思维,采用的是红蓝军对抗;三是组织上主动保持熵减,抵消组织的熵增定律。
一是不赚快钱、不赚容易的钱、不要钱。
2000年在华为最困难的时候,任正非坚决反对做赚钱房地产,也放弃了赚很多钱的小灵通。但前前后后投入几十亿的3G,颗粒无收。当时公司又面临思科诉讼,任正非回忆,他当时内心只剩下一种感受——害怕。
“那几年,我是度日如年,看到别人赚大钱,我们不赚钱;看到我们比别人的困难多。外面大量文章都是讽刺挖苦我们的。万一我真的错了怎么办?”任正非出差南非,在先民纪念馆前的小广场上,失声痛哭了近两个小时。
但即便半只脚已经踏在悬崖边上,任正非依旧把“赚快钱”的口子捂得死死的:“挣完大钱,就不会再想挣小钱了。华为要爬行着赚小钱。” 即便任正非把华为卖给摩托罗拉,过舒服日子,但命运再次让任正非走窄路,没卖成。
任正非最终也一咬牙,干脆一条道走到黑,“一心一意走信息产业这条路不动摇了”。任正非说:“我个人性格是窄窄的,所以让我们公司前面的道路也窄窄的,千万不要做房地产,千万不要做赚钱的东西,我们做世界上最难的、最不赚钱的东西,因为人们不愿意做。”
不赚钱还不够,还要不要钱,任正非把自己股份降到最低,他说:“我们要钱干什么?高价时挣太多钱干什么?分给员工大家又会变懒。那干些什么好呢?往基础研究这个“无底洞”里砸,我们现在把钱送给科学家,支持他的项目”。
华为成了世界上基础研究投入最“浮躁”的公司:每年收入的20%-30%必须投到基础研究中,“低了,是有人要被砍头的”。截至2019年底,华为前后投入到研发的真金白银,居然超过6000亿元,位居全球研发投入第5位。
砸得太多、太狠,以至于华为一不小心砸成了“世界上最穷的高科技公司”:任正非规定,华为不能赚太多钱,“利润太多说明战略投入不够”。所以华为年净利润率基本保持在8%上下。
2019年上半年曾不小心赚多了,这个数字偏差到8.7%,被任正非一再批评,常务董事会甚至因此写了书面检讨。所以每年在华为都会出现一个奇特景象:年初“养猪”,十几万人齐心协力把“猪”养肥,到年底利润几乎全被分光,公司又变回一头“瘦猪”。
但也有内部员工批评,华为“砸钱”就像在做善事,动辄五六倍工资也就算了,砸的科学家竟然有许多都不在华为编制里,资助出来的研究成果居然还都归科学家所有,华为想用还得跟他们购买。
“我们向全世界著名大学的著名教授‘撒胡椒面’,对这些钱我们没有投资回报的概念。我们支持科学家的创新,对科学家不要求追求成功,失败也是成功,因为他们把人才培养出来了。”
但就是这么砸着砸着,某天这些科学家中突然有人告诉华为:“我们把2G到3G的算法突破了”,华为一夜间领先世界。包括5G,也正是源自10多年前一位土耳其教授的一篇数学论文,被华为发现了,一步步投入数千人去研究,才有华为5G的今天。
二是红蓝军对抗,不可胜在己可胜在敌,要主动制造敌人对抗自己。
任正非是一个危机意识非常强烈的企业家,而他在军队工作14年,喜欢研读军事史,深知蓝军对于一个组织增加抵抗能力、保持组织长期活力的重要性,在此基础上,华为“蓝军参谋部”在2006年正式成立。
华为成立蓝军部的目的:蓝军部的职责是对抗“红军”的执行战略和方案,考虑清楚未来三年怎么把华为“打倒”。蓝军采取逆向思维,从不同的视角来观察公司的战略与技术的发展,论证红军战略/产品/解决方案的漏洞和问题;模拟对手的策略来对抗红军部。
蓝军部门具体担负职责:一是观察分析红军部门制定的战略;二是扮演成竞争者、跟红军模拟竞争。简单来说,蓝军部就是为红军部而生,蓝军就是红军的假想敌和反对派。
在华为发展日趋稳定的过程中,任正非意识到在未来能够打败华为,必将是华为自己。因此,他为了避免华为高层战略决策失误而带来巨大的风险,特意设立了蓝军部门来进行自我博弈。
按照任正非的说法,“蓝军就是要想尽办法来否定红军”。不要怕有人反对,有人反对其实是好事。关于蓝军部门的组织逻辑,任正非说,有些人特别有逆向思维,挑毛病特别厉害,就把他培养成为“蓝军”司令,“蓝军”的司令可以是长期固定的,而“蓝军”战士是流动的。
蓝军部门也是华为人才的培养基地,任正非说,一段时间后就可以把原来“蓝军”中的战士调到“红军”中做团长。“红军”的司令官以后也可以从“蓝军”的队伍中产生。
跟现实中的军事演习、红蓝军对抗一样,华为内部蓝军获胜的唯一条件,就是要“打倒”红军部门,甚至思考如何在内部“摧毁”华为。因此,蓝军部门会特别重视红军部门制定的发展战略和技术发展路线,他们会从不同的角度、维度,甚至以一个“外来者”的角度去观察、分析红军制定的战略,唯一的目的就是找出它们的缺点和不足。
如果战略暂时找不到错误,他们就会采用逆向思维,推演、分析红军的产品、执行方案和解决方案,从而找到漏洞。如果红军部门能够顺利过关,接下来蓝军部门就扮演成华为的竞争对手,以模拟竞争的形式来对抗红军,在“实战”中检验红军的战略、产品和各种方案。
这算是一整套的蓝军部门工作流程。华为的蓝军部门人员同样是竞争力极强,效率极高的员工,因此能够在红军的防范下“活过来”,一定是经过千锤百炼,给出华为红军内部认可的“逆向”方案,这也是华为具备强大竞争力的主要原因之一。
三是主动保持熵减,抵消组织的熵增定律。
“熵”的通俗理解就是“混乱程度”。简单地说熵是衡量我们这个世界中事物混乱程度的一个指标。对于个人来说,我们大脑每天会接受各种各样的信息,学习各种知识,大脑需要记忆,需要处理,也就意味着大脑系统中的熵值在不断增加。如果不及时优化、排序、减少,最后大脑就无法处理事情,就会趋于混乱或者无序的状态。
1854年,德国人克劳修斯,首次提出了熵增定律——在一个封闭的系统内,热量总是从高温物体流向低温物体,从有序走向无序,如果没有外界向这个系统输入能量的话,那么熵增的过程是不可逆的,最终会达到熵的最大状态,系统陷入混沌无序。
熵增定律是最绝望的物理定律,只因人类所处的宇宙也是一个封闭的系统,而封闭系统逃不开熵增的命运,最终会慢慢达到熵的最大值,出现物理学上的热寂,变得与沙漠无异。无论个人还是组织只要封闭都会陷入到熵增定律的命运中。
1998年的亚马逊股东信中,贝佐斯说道:“我们要反抗熵增。”彼得·德鲁克也曾说:“管理就是要做一件事情,就是如何对抗熵增。”任正非认为,对抗熵增可以说是华为长期以来的指导性管理原则。
任正非知道,华为总有一天会走向死亡,因此他要求各级管理者要不断通过实现熵减,让华为的发展过程能够持续保持活力、延长组织寿命。他在为《熵减:华为活力之源》作的序言中写道:
“熵减的过程十分痛苦,十分痛苦呀!但结果都是光明的。从小就不学习,不努力,熵增的结果是痛苦的,我想重来一次,但没有来生。人和自然界,因为都有能量转换,才能增加势能,才使人类社会这么美好。”
该文结尾总结中写到:整个华为公司就是这样的熵减机制,希望通过建立耗散结构,通过战略牵引:吐故,把旧的技能,旧的思想等等冗余的组织吐掉;纳新,把新的开放,打破平衡,活性因子引入进来。以此从旧的无效走到新的有效。
而英伟达CEO领导天才有三个方法,一是吸引天才,来英伟达工作;二是为天才增值;三是为天才创造毕生奋斗的事业。如今英伟达,已经把AI的软硬件生态打通,不仅让谷歌买它的芯片,而且软件上也可以成为兼容谷歌的产品。
谷歌在很多领域投入不少,保持着持续创新,但创新总是草草收尾。2005年,谷歌成立无人驾驶团队Waymo,直到2016年宣布将Waymo拆分时,后者已成为业内首屈一指的无人驾驶技术研发商。但目前,谷歌的无人驾驶商业化并没有成功。
2014年,谷歌收购了英国的DeepMind公司,该团队2016年-2017年的阿尔法系列,二次战胜世界级围棋冠军,退出比赛,但之后该团队似乎如沉寂了一般。根据各种信息披露,谷歌一直没有赢得DeepMind团队的信任,而是一直存在各种冲突与防卫。
2020年开始,谷歌一直开始尝试短视频产品,但推出的Area120、Shorts、Imangen Video等产品,陷入自娱自乐中难以自拔。虽然有世界上最大的视频网站 YouTube的基础,但都没有什么起色,根本不是Tik Tok的对手。
八名谷歌天才离开后,谷歌会在大模型落后中改变吗?