- 博客(13)
- 收藏
- 关注
原创 探索RAG(四)--ARG with Chroma(四)
本质上Embedding Adaptors与 embeddings-based retrieval的差别是Embedding Adaptors增添了一层 embedding adaptors。这是一个非常简单的神经网络模型,目的是在判断用户给的问题与文内是否具有相关性,有利于更好地反馈给用户。在前文介绍了诸多种方法后,在本节我们将去了解Embedding Adaptors这一方法的使用。和之前的方法不同的是,Embedding Adaptors需要进行训练。
2024-05-31 09:32:02 445
原创 探索RAG(四)--ARG with Chroma(三)
那么为什么这样效果会变好?这个和embeddings-based retrieval看起来很相似,只不过在Cross-encoder re-ranking中多增添了一道重新检索的过程,这样相比,embeddings-based retrieval似乎更为快速。在上节中使用到的两种方法都是在原查询的基础上,利用LLM对其进行内容上的扩充,有利于检索相关性文档,本节在此基础上,阐述Cross-encoder re-ranking(交叉编码器重新排序)对于检索内容结果的正面影响。
2024-05-29 15:48:26 645
原创 探索RAG(四)--ARG with Chroma(二)
在本节中,阐述了使用Query Expansion 和 Expansion with multiple queries两种方法,并依据实际例子证实了这两种方式的可行性,针对于上面的两种方案,在实际中应按照具体任务去实行。下节内容将介绍交叉编码以及重新排序。
2024-05-29 10:47:13 942
原创 探索RAG(四)--ARG with Chroma(一)
在(二)中我们提到RAG的三种方式:native RAG,advanced RAG, modular RAG,仔细对比将发现,其实这三种方法最终只有一个目的:增强检索的内容,提升检索文档与查询的相关性。如同native RAG方式一样,系统先用大量的相关文本组成矢量数据库,查询通过嵌入embedding后与矢量数据库进行相似度计算(余弦距离),找到最近的几个文档(top-n,n依据事实确定),最后将前n个最近文档与原查询组合在一起送到LLMs,让LLMs给出回答。将矢量加载入Chroma中。
2024-05-28 20:15:36 792
原创 探索RAG(三)--RAG vs Fine-tuning
由于大模型的日益普及,大模型的增加引起了相当大的关注。在LLM的优化方法中,RAG经常与微调(FT)和提示词工程(Prompt)相比较,RAG,Fine-tuning以及提示词工程都是用于加强模型在特定领域的性能。值得一提的是,RAG和FT并不是相互排斥的,可以相互补充,在不同的层面上增强模型的能力。在本节中,比较了RAG,FT,Prompt三种方式对LLMs的调教,各自有优缺点,将RAG与FT相结合可能是未来的主要方向。如图所示,每种方法都有不同的特征,我将从下面的表格具体比较这三种方式。
2024-05-28 10:49:32 551
原创 探索RAG(二)
本节从大模型层面阐述RAG出现的意义,并在此基础上探讨RAG的三种形式:native RAG,advanced RAG, modular RAG。下节将探讨RAG与微调的区别。
2024-05-28 10:23:55 762
原创 探索RAG(一)
在建立的 RAG 模型中,参数记忆是预先训练的 seq2seq转换器,非参数记忆是维基百科的密集向量索引,通过预先训练的神经检索器访问。在本篇论文中,Patrick Lewis等人介绍了RAG模型,其中参数记忆是预先训练的seq2seq模型,非参数记忆是维基百科的密集向量索引,通过预先训练的神经检索器访问。Patrick Lewis在广泛的知识密集型NLP任务上对模型进行了微调和评估,并在三个开放领域的QA任务上设置了最先进的水平,性能优于参数seq2seq模型和特定于任务的检索和提取架构。
2024-05-27 15:43:56 890
原创 关于国内外语法纠错的研究(四)-性能提升(二)
自定义推理方法(Costom Inference Methods),目前来看,各种推理技术已被提出来提高系统输出的质量或加快推理时间在GEC。其中最常见的是应用多轮推理,称为迭代解码或多轮解码。应用多轮推理能够提高输出质量。这是由于GEC的输入和输出使用相同的语言,因此模型的输出可以再次通过模型以产生输出的第二次迭代,达到二次纠正的效果。简单来说,多轮推理可以理解为输入–纠错–再次纠错:这样做的好处是,模型有第二次机会纠正它在第一次迭代中可能错过的错误。
2024-05-27 09:55:22 1354
原创 关于国内外语法纠错的研究(四)-性能提升(一)
系统产生的最有可能的候选句(即 n = 1),而是位于最有可能的 n 个候选句中的某个地方。作为单独的后处理,基于 SMT 或 NMT 的 GEC 系统产生的候选词可以使用丰富的特征集进行重排序、这样就能选出更好的候选结果作为 "最佳 "修正。此外,大多数用于 GEC 的系统组合方法都是在黑箱设置下工作的,只需要系统的输出,而无需访问系统的内部结构和预测概率。Susanto、Phandi 和 Ng 的研究表明,将不同的 GEC 系统组合在一起,可以产生一个更好的系统,具有更高的准确性。
2024-05-25 16:48:22 916
原创 关于国内外语法纠错的研究(三)-方法篇(一)
在上文提到目前国际上比较著名的几个数据集,在本文将讨论目前在GEC 领域存在的几种方法,包括分类器(统计和神经)、机器翻译(统计和神经)、基于编辑的方法和语言模型,本文将高度总结分类器方法和机器翻译,并介绍在用此两类方法构建GEC系统的重要模型。本篇介绍了两种语法纠错方法,阐述了其发展历史以及方法本身的优势和缺点,下篇将讲述另外两种方法基于编辑的方法和语言模型。
2024-05-23 18:56:47 799
原创 关于国内外语法纠错的研究(二)-数据集
Arabic(阿拉伯语)的QALB-2014,QALB-2015;Czech(捷克语)的AKCES-GEC,GECCC;German(德语)的Falko-MERLIN;Japanese(日语)的TEC-JL;Russian(俄语)的RULEC-GEC;Ukrainian(乌克兰语)的UA-GEC下篇文章将介绍用于语法介绍的核心方法。
2024-05-23 10:32:02 1236
原创 关于国内外语法纠错的研究(一)
写作是一项需要学习的技能,对于非母语用户来说尤其具有挑战性。在我们的母语中,我们偶尔都会犯标点、拼写错误,以及选词上的小错误,所以非母语作家常常很难创作出符合语法且易于理解的文本。自然语言处理 (NLP) 领域的研究至少从 20 世纪 80 年代起就已经解决了“格式错误的输入”问题,因为除非输入符合语法,否则文本的下游解析通常会崩溃(Kwasny 和 Sondheimer 1981;Jensen 等人 1983)。
2024-05-22 18:39:19 1160 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人