探索RAG(一)

概要

在本节中将主要探讨RAG(Retrieval-Augmented Generation,检索增强生成)的技术背景以及主要方法。

大语言模型与RAG

大语言模型(Large Language Models,简称LLMs)的兴起代表着人工智能在NLP领域的一次巨大推进,事实证明大语言模型比以往的模型在各个领域有着更为出色的表现,这得益于它的超大规模参数。
大型预先训练的语言模型已被证明可以将事实知识存储在它们的参数中,并在微调下游NLP任务时获得最先进的结果。但是,在实际使用场景中,LLMs存在以下问题:

  • LLMs获取和精确操作知识的能力仍然有限,因此在知识密集型任务中,他们的性能落后于特定于任务的体系结构,下文简称特定任务。
  • 为LLMs的决策提供来源和更新他们的世界知识仍然是悬而未决的研究问题,下文简称更新任务。

在2020年,Patrick Lewis等人提出了《Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks》,它结合了预先训练的参数和非参数记忆用于语言生成。在本篇论文中,Patrick Lewis等人介绍了RAG模型,其中参数记忆是预先训练的seq2seq模型,非参数记忆是维基百科的密集向量索引,通过预先训练的神经检索器访问。论文比较了两种RAG公式,一种方案以整个生成序列中检索到的相同段落为条件,另一种方案则可以在每个标记中使用不同的段落。Patrick Lewis在广泛的知识密集型NLP任务上对模型进行了微调和评估,并在三个开放领域的QA任务上设置了最先进的水平,性能优于参数seq2seq模型和特定于任务的检索和提取架构。对于语言生成任务,RAG模型生成的语言比最先进的仅限参数的seq2seq基线生成的语言更具体、更多样化和更符合事实。

RAG

预训练的神经语言模型已被证明可以从数据中学习大量深入的知识。它们不需要访问任
何外部存储器,就可以作为参数化的隐式知识库(大量的隐藏参数)来学习。虽然这一发展令人振奋,但这类模型也有缺点:更新任务难,不能直接洞察自己的预测,还可能产生 “幻觉”(特定任务能力差)。将参数记忆与非参数(即基于检索的)记忆相结合的混合模型可以解决其中的一些问题,因为知识可以被直接修改和扩展,而且获取的知识可以被检查和解释。
将参数和非参数混合记忆法引入序列到序列(seq2seq)模型,构成了RAG方法,具体来说
通过一种通用的微调方法,为预先训练好的参数记忆生成模型赋予了非参数记忆。在建立的 RAG 模型中,参数记忆是预先训练的 seq2seq转换器,非参数记忆是维基百科的密集向量索引,通过预先训练的神经检索器访问。将这些组件结合到一个端到端训练的概率模型中。检索器(Dense Passage Retriever,简称 DPR)提供以输入为条件的潜在文档,然后 seq2seq 模型以这些潜在文档和输入为条件生成输出。用 top-K 近似值对潜在文档进行边际化,边际化可以是按输出(假设同一文档对所有标记负责)或按标记(不同文档对不同标记负责)进行边际化。与 BART 一样,RAG 可以在任何 seq2seq 任务上进行微调,生成器和检索器都是通过联合学习得到的。
在这里插入图片描述
如上图所示:将预先训练好的检索器(查询编码器 + 文档索引)与预先训练好的 seq2seq 模型(生成器)相结合,并进行端到端的微调。对于查询X,使用MIPS(Maximum Inner Product Search)去发现前K个文档Zi,将Z视为潜在变量,并对不同文档的seq2seq预测进行边际化处理。
之前已经有大量的工作提出了用非参数记忆来丰富系统的架构,这些非参数记忆是针对特定任务从头开始训练的,例如记忆网络,堆栈增强网络和记忆层。相比之下,Patrick Lewis探索了一种设置,在这种设置中,参数和非参数记忆组件都经过了预先训练,并预先加载了大量的知识。至关重要的是,通过使用预先培训的获取机制,无需额外培训即可获取知识

小结

在本节中,初步探讨了RAG的任务,介绍了其基本的结构由检索器和seq2seq模型组成,下节将剖析其内部细节。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

桔色的猫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值