探索RAG(四)--ARG with Chroma(三)

概要

在上节中使用到的两种方法都是在原查询的基础上,利用LLM对其进行内容上的扩充,有利于检索相关性文档,本节在此基础上,阐述Cross-encoder re-ranking(交叉编码器重新排序)对于检索内容结果的正面影响。

Cross-encoder re-ranking

如下图所示,Cross-encoder re-ranking的策略本质上时筛选更为相关的文档。首先从矢量数据库中检索出n个相关文档块,再将这n个文档块重新排序,筛选最为相近的几个文件块。
那么为什么这样效果会变好?这个和embeddings-based retrieval看起来很相似,只不过在Cross-encoder re-ranking中多增添了一道重新检索的过程,这样相比,embeddings-based retrieval似乎更为快速。在这里,我给出的答案是:

  • 在上节中提到,仅仅依靠语义上的相似度来确定与原查询内容相关块,这样的操作往往得不到满意的结果,可能有一种情况是相关性的文档根本没有检索到,比如在embeddings-based retrieval中假设距离最近前5名,而实际相关的文档却在5名开外,这种策略就难以检索完整。Cross-encoder re-ranking就是将范围放大(n=20,30,40…),再从里面进行排序,确保无“漏网之鱼”。来看下面的示例:
    在这里插入图片描述
    本节依旧选择2022年微软的报告作为外部数据:
embedding_function = SentenceTransformerEmbeddingFunction()

chroma_collection = load_chroma(filename='microsoft_annual_report_2022.pdf', collection_name='microsoft_annual_report_2022', embedding_function=embedding_function)
chroma_collection.count()

将检索范围扩大至前10名:

query = "What has been the investment in research and development?"
results = chroma_collection.query(query_texts=query, n_results=10, include=['documents', 'embeddings'])

retrieved_documents = results['documents'][0]

for document in results['documents'][0]:
    print(word_wrap(document))
    print('')

接下来对其进行重新排序,但在这里,得分情况将不再按照之前的余弦距离作为评判标准,而是采用Cross-encoder,如下图所示:
在这里插入图片描述
每一个被检索的文档都会被用来与原查询计算得分:
在这里插入图片描述

from sentence_transformers import CrossEncoder
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
pairs = [[query, doc] for doc in retrieved_documents]
scores = cross_encoder.predict(pairs)
print("Scores:")
for score in scores:
    print(score)

结果如下:
在这里插入图片描述
重新排序:

print("New Ordering:")
for o in np.argsort(scores)[::-1]:
    print(o+1)

在这里插入图片描述

小结

在本节中,我们采用了Re-ranking 策略去提升检索文档的精确度,不难看出Re-ranking完全可以和扩展查询进行结合,以达到最好的效果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

桔色的猫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值