Boston波士顿房价数据下载

该博客展示了如何使用Python的Scikit-Learn库进行Lasso回归分析,以预测波士顿房价。首先从UCI机器学习库下载并加载数据,然后通过StandardScaler进行预处理。接着,利用Lasso回归模型训练数据,并打印出模型系数以解释特征对目标变量的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

下载地址:https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data

打开方式: 直接用excel可以打开,转存为csv等
在这里插入图片描述
模型训练

from sklearn.linear_model import Lasso
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import load_boston
 
boston = load_boston()
scaler = StandardScaler()

X = scaler.fit_transform(boston["data"])
print('X',X)
Y = boston["target"]
print('Y', Y)
names = boston["feature_names"]
print('names',names)

在这里插入图片描述
LASSO惩罚回归

from sklearn.linear_model import Lasso
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import load_boston
import numpy as np

#输出线性方程的辅助函数
def pretty_print_linear(coefs, names = None, sort = False):
	if names is None:
		names = ["X%s" % x for x in range(len(coefs))]
	lst = zip(coefs, names)
	if sort:
		lst = sorted(lst,  key = lambda x:-np.abs(x[0]))
	return " + ".join("%s * %s" % (np.round(coef, 3), name) for coef, name in lst)
boston = load_boston()
scaler = StandardScaler()
X = scaler.fit_transform(boston["data"])
Y = boston["target"]
names = boston["feature_names"]

lasso = Lasso(alpha=.3)
lasso.fit(X, Y)

print("lasso model:", pretty_print_linear(lasso.coef_, names, sort = True))
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值