香农熵计算 | 常见案例

香农熵代表了搞清楚一个事件所需要的信息量的大小,其计算公式为:

H ( x ) = − ∑ p ( x ) l o g p ( x ) H(x)=-\sum p(x)logp(x) H(x)=p(x)logp(x)
其中log表示对数,通常使用二进制对数(底数为2)。

例:假如雨量等级定义为1到16级,计算明天下雨这一事情的信息熵。

如果我们假设每个等级的概率相等(即每个等级有相同的可能性),那么信息熵的计算将最大化。在这种情况下,每个等级的概率为 1 16 \frac{1}{16} 161。因此,计算信息熵:
H = − ∑ i = 1 16 ( 1 16 l o g 2 ( 1 16 ) ) H = − 16 ( 1 16 l o g 2 ( 1 16 ) ) H = − 16 ( 1 16 ⋅ ( − 4 ) ) H = 4   b i t s H=-\sum^{16}_{i=1}(\frac{1}{16}log_{2}(\frac{1}{16})) \\ H=-16(\frac{1}{16}log_{2}(\frac{1}{16})) \\ H=-16(\frac{1}{16} \cdot(-4)) \\ H=4 \space bits H=i=116(161log2(161))H=16(161log2(161))H=16(161(4))H=4 bits

因此,如果每个等级的概率相等,明天下雨这一事情的信息熵为4比特。同理可得,扔一枚硬币,共有两种可能性(正面和反面),这一事件的信息熵可达2比特。投掷一枚8面的骰子的信息熵为3比特。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值