The Cross-evaluation of Machine Learning-based Network Intrusion Detection Systems

本文提出了一种新的方法,通过混合不同网络数据集进行ML-NIDS的交叉验证,揭示了现有标注数据的隐藏潜力,同时强调了无额外标注成本下改进NIDS性能的关键。XeNIDS框架首次展示了这种评估的复杂性和价值,通过六大数据集实验,揭示了ML-NIDS的未发掘特性与风险。
摘要由CSDN通过智能技术生成

本文提出了交叉检验的框架,指的是在不同的数据集进行交叉验证。we endorse the idea of cross-evaluating ML-NIDS by using malicious samples captured in different network datasets.1 By performing such cross-evaluations, it is possible to gauge additional
properties of ML-NIDS, allowing a better understanding of
the state-of-the-art at no extra labelling cost.

However, most related work simply used such data as an ‘additional’ setting to perform their experiments. In contrast, in this paper we promote a different approach, based on mixing different network data to cross-evaluate ML-NIDS

链接为:https://arxiv.org/abs/2203.04686

异常检测是发现真实入侵攻击的辅助工作

Specificallyin NID, by creating a training dataset where the samples are distinguished between benign and malicious, it is possible to
develop a fully autonomous Machine Learning-based Network
Intrusion Detection System (ML-NIDS)

Abstract—Enhancing Network Intrusion Detection Systems
(NIDS) with supervised Machine Learning (ML) is tough. MLNIDS must be trained and evaluated, operations requiring data where benign and malicious samples are clearly labelled.

Such labels demand costly expert knowledge, resulting in a lack of real deployments, as well as on papers always relying on the same
outdated data. The situation improved recently, as some efforts
disclosed their labelled datasets. However, most past works used
such datasets just as a ‘yet another’ testbed, overlooking the
added potential provided by such availability.

In contrast, we promote using such existing labelled data to
cross-evaluate ML-NIDS. Such approach received only limited attention and, due to its complexity, requires a dedicated treatment.
We hence propose the first cross-evaluation model. Our model
highlights the broader range of realistic use-cases that can be
assessed via cross-evaluations, allowing the discovery of still unknown qualities of state-of-the-art ML-NIDS. For instance, their
detection surface can be extended—at no additional labelling
cost. However, conducting such cross-evaluations is challenging.
Hence, we propose the first framework, XeNIDS, for reliable
cross-evaluations based on Network Flows. By using XeNIDS on
six well-known datasets, we demonstrate the concealed potential,
but also the risks, of cross-evaluations of ML-NIDS.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值