torchvision中数据集的使用

本文介绍了如何使用PyTorch中的torchvision库加载CIFAR10数据集,并演示了如何对测试集进行图像预处理以及使用TensorBoard进行可视化。作者展示了如何在循环中读取测试集样本并将其添加到TensorBoard日志中。
摘要由CSDN通过智能技术生成
#学习看官方文档
import torchvision
from torch.utils.tensorboard import SummaryWriter

# train_set = torchvision.datasets.CIFAR10(root='./dataset',train=True,download=True)
# test_set = torchvision.datasets.CIFAR10(root='./dataset',train=False,download=True)
#
# print(test_set[0])
# print(test_set.classes)
# img, target = test_set[0]
# print(img)
# print(target)
# img.show()
# print(test_set.classes[target])

dataset_transform = torchvision.transforms.Compose([torchvision.transforms.ToTensor()])
train_set = torchvision.datasets.CIFAR10(root='./dataset',train=True,transform=dataset_transform,download=True)
test_set = torchvision.datasets.CIFAR10(root='./dataset',train=False,transform=dataset_transform,download=True)

print(test_set[0])

writer = SummaryWriter('logs')
for i in range(10):
    img,target = test_set[i]
    writer.add_image('test_set',img,i)

writer.close()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值