torchvision.models现有模型的基本使用

mport torchvision
from torch import nn

vgg16_false = torchvision.models.vgg16(pretrained=False)
vgg16_true = torchvision.models.vgg16(pretrained=True)
print(vgg16_true) #可以看最后一层Linear(in_features=4096, out_features=1000, bias=True

#如何运用到只有十个类别的数据?
train_data = torchvision.datasets.CIFAR10('./dataset',train=True,transform=torchvision.transforms.ToTensor())

vgg16_true.add_module('add_linear',nn.Linear(1000,10)) #整个vgg16后面加
print(vgg16_true)

#如果是在中间层插入呢?比如叫classifier的module后面
vgg16_true.classifier.add_module('add_linear',nn.Linear(1000,10))
# print(vgg16_true)

#不插入 直接修改呢?
# print(vgg16_false)
vgg16_false.classifier[6] = nn.Linear(4096,10)
print(vgg16_false)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值