PCAtools|主成分分析

library(PCAtools)
library(tidyverse)
ls(package:PCAtools)
iris <- as.data.frame(iris)
iris <- iris %>% mutate(class = str_c("a",1:dim(iris)[1],sep = ""))
rownames(iris) <- iris$class
iris <- iris[,-6]
head(iris)
# 构建矩阵
expr=iris[c(1,2,3,4)] #  表达矩阵,行是基因,列是样本名
head(expr)
class <- iris[5] #分组信息,行是样本名,每一列是对应的分组信息
head(class)
expr <- scale(expr)
head(expr)
expr <-t(expr)  #  表达矩阵,行是基因,列是样本名
expr[,c(1:4)]
pca <- pca(expr, metadata = class) 
biplot(pca,x="PC1",y="PC2",colby = "Species",
       legendPosition = "right",lab = NULL,
       encircle = TRUE, encircleFill = TRUE)
# pca[["variance"]]
# pca[["variance"]][["PC1"]]

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值